D |KEL:

Getting Started
Building Applications with RL-ARM

For ARM Processor-Based Microcontrollers

www.keil.com

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It isagainst the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2009 ARM Ltd and ARM Germany GmbH.
All rights reserved.

Keil, the Keil Software Logo, pVision, MDK-ARM, RL-ARM, ULINK, and
Device Database are trademarks or registered trademarks of ARM Ltd, and
ARM Inc.

Microsoft® and Windows " are trademarks or registered trademarks of Microsoft
Corporation.

NOTE

This manual assumes that you are familiar with Microsoft® Windows™ and the
hardware and instruction set of the ARM7" and ARM9™ processor families or
the Cortex" -M series processors. In addition, basic knowledge of pVision®4 is
anticipated.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started: Building Applications with RL-ARM

Preface

This manual is an introduction to the Real-Time Library (RL-ARM ™), which is
agroup of tightly coupled libraries designed to solve the real-time and
communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

Using This Book

This book comes with a number of practical exercises that demonstrate the key
operating principles of the RL-ARM. To use the exercises you will need to have
both the Keil™ Microcontroller Development Kit (MDK-ARM ™) installed and
the Real-Time Library (RL-ARM). If you are new to the MDK-ARM, thereisa
separate Getting Started guide, which will introduce you to the key features. The
online documentation for the MDK-ARM, including the Getting Started guide, is
located at www.keil.com/support/man_arm.htm.

Alongside the standard RL-ARM examples, this book includes a number of
additional examples. These examples present the key principles outlined in this
book using the minimal amount of code. Each example is designed to be built
with the evaluation version of the MDK-ARM. If thisis not possible, the
exampleis prebuilt so that it can be downloaded and run on a suitable evaluation
board.

This book is useful for students, beginners, advanced and experienced developers
alike.

However, it is assumed that you have a basic knowledge of how to use
microcontrollers and that you are familiar with the instruction set of your
preferred microcontroller. In addition, it is helpful to have basic knowledge on
how to use the pVision Debugger & IDE.

Preface

Chapter Overview

“Chapter 1. Introduction”, provides a product overview, remarks referring to
the installation requirements, and shows how to get support from the Keil
technical support team.

“Chapter 2. Developing with an RTOS’, describes the advantages of the RTX,
explainsthe RTX kernel, and addresses RTOS features, such as tasks,
semaphores, mutexes, time management, and priority schemes.

“Chapter 3. RL-Flash Introduction”, describes the features of the embedded
file system, how to set it up, configuration options, standard routines used to
maintain the file system, and how to adapt flash algorithms.

“Chapter 4. RL-TCPnet Introduction”, describes the network model, TCP key
features, communication protocols, and how to configure an ARM processor-
based microcontroller to function with HTTP, Telnet, FTP, SMTP, or DNS
applications.

“Chapter 5. RL-USB Introduction”, describes the USB key features, the
physical and logical network, pipes and endpoints, the device communication
descriptors, and the supported interfaces and their classes.

“Chapter 6. RL-CAN Introduction”, describes the CAN key concepts, the
message frame, and the programming APl implemented.

Getting Started: Building Applications with RL-ARM

Document Conventions

README.TXT" Bold capital text is used to highlight the names of executable programs,
data files, source files, environment variables, and commands that you
can enter at the command prompt. This text usually represents
commands that you must type in literally. For example:

ARMCC.EXE DIR LX51.EXE

Courier Text in this typeface is used to represent information that is displayed on
the screen or is printed out on the printer

This typeface is also used within the text when discussing or describing
command line items.

Variables Text in italics represents required information that you must provide. For
example, projectfile in a syntax string means that you must supply the
actual project file name

Occasionally, italics are used to emphasize words in the text.
Elements that repeat... Ellipses (...) are used to indicate an item that may be repeated

Omitted code Vertical ellipses are used in source code listings to indicate that a
fragment of the program has been omitted. For example:
void main (void) {

while (1);

«Optional ltems» Double brackets indicate optional items in command lines and input
fields. For example:

C51 TEST.C PRINT «filename»

{optl | opt2 } Text contained within braces, separated by a vertical bar represents a
selection of items. The braces enclose all of the choices and the vertical
bars separate the choices. Exactly one item in the list must be selected.

Keys Text in this sans serif typeface represents actual keys on the keyboard.
For example, “Press F1 for help”.

Underlined text Text that is underlined highlights web pages. In some cases, it marks
email addresses.

Y1t is not required to enter commands using all capital letters.

6 Content

Content
PIEFACE. ...t 3
Document CONVENTIONS...........eiiiieiiesie ettt s eas 5
Lo 1= 0| RS 6
Chapter 1. INtrodUCHION.......cccueiie e nneas 10
RL-ARM OVEINVIBW ...ttt ettt ste et esaee e stesbeebe e beenbeenneas 10
S £ 1O 1 TS 11
FIash File SYStEM.....cui e st sre e 11
IO L S 12
LU RS S 12
LA N RSSO 13
INSEAHBLION ...c.veeieecie ettt ere e be e be e sae e saeesaeeearas 14
Product FOIEr SITUCTUNE.......ccveieeeeee e 14
Last-MinutE ChanQES.........ccveiieiieeie ettt 15
REQUESEING ASSISIANCE ..ottt 15
Chapter 2. Developing With an RTOS ..o 16
LT (1] g0 S = (= o [T 16
SELtiNg-UP @PrOJECE......c.oiiiieieeieeee e 17
S = 111 19
B 1= S TSRS 19
SEATING RTX et 21
CrEatiNg TASKSveueeueeuirieriesrereesies ettt b e sn b e s e enenreas 22
Task ManNagEMENT........ccciiieiieiee e ee et e e sre e snee s eeenreenreenneas 24
MUIPIE INSLANCES. ...ttt st st sresreenne s 24
TimME MaNAGEMENT ... 24
T 0S] = - Y S 25
Periodic Task EXECULIONc.coeieieieires e 26
VIPTUBE TIMEY ittt et ebe b e e ebe e saeesanesnnas 26
[AIE DBIMON ...ttt st s reeaesreeneeseeeneentens 27
Inter-Task COMMUNICELIONcoueveeeieieresie s 28
BV NS o 28
RTOS Interrupt HaNAIiNGcccooveeeeieneseseseeee e 29
Task Priority SChemME.......ccooie it 31
RS 01 0] 0= 32
USING SEMEPNOTEScuiiiiitiiterieseeee et 34
S0 7= o 34

Getting Started: Building Applications with RL-ARM

RENAEZVOUS.cuveieeeieee ettt e et e st sneenaesreenaens 35
Barrier TUMNSLIE. ..o s 36
SeMAPNOrE CAVEELS........ceeeiieecee ettt e e ere e 38
IVTULEX ..ttt st sbe e e n et e nne e e naneeanes 38
MULEX CAVEALSveeveeiieitee sttt ettt ettt st sttt b e sbe e sae et e nbeebeeteas 39
Y= oo) TSR 39
Task LOCK @nd UNIOCKccoiiiiiiisiirieeeeeeses s 43
CONFIQUIBLION.......cvieitc sttt sne e 43
Task DEfiNITIONS........coieieeee e 44
System Timer CONfiQUIaioncccoeeveeiieeiieesie e e 45
Round Robin Task SWItChINGcoviiiiieieerese e 45
Scheduling OPLiONS.........cooiiieee e 45
Pre-emptive SCheduling.........cccooeiiiiece e 46
Round Robin SCheduling..........cccovvieeie i 46
Round Robin Pre-emptive Scheduling ... 47
Co-operative MUItItaSKIiNGcoerereerereeeese e 47
PriOrity INVEISION ..ot 47
Chapter 3. RL-FIash INntroducCtionccccceoeeininineneieeeeese e 49
LT (1] g0 S = (= o [P 49
Setting-Up the File SyStem ..o 50
FIle 1/O ROULINES......c.eiiieeeeeciiee ettt st sne e 52
Volume Maintenance ROULINES..........cccureieirinenisie et 54
Flash Drive Configurationccoererineieienese s 56
Adapting Flash Algorithmsfor RL-Flash...........cccoeiiiiiiinicee 58
MUIIMEAIA CArdS. ... coveeeeeierieee e eneens 60
SENAl FIASN .. 62
Chapter 4. RL-TCPNet INtrodUCLIONcceveeeirierierieseeeeeesese e 63
TCP/IP =Ky CONCEPLS.....c.oeiveeieitecieeie st eie e st este e eeste e s sre e sne e ne e ens 63
NEWOrK MOGE ..o et enaens 63
Ethernet and IEEE 802.3cooiiiieereeeee et 65
TCP/IP DaAgraIMS.c.eeieeiieeieesieesieeserseeeseeesteesresssessnseesseesseesssssnssssesssesssees 65
INEErNEL PrOLOCOeiviiieeieiieeee et 65
Address Resolution ProtoColcceceieeeennieeeseceese e 66
o= Y= S S 67
Dynamic Host Control Protocol DHCP.........cccoeiiiiceece e, 68
Internet Control Message ProtOCOIcceveirininenineeeeeee s 68
Transmission Control ProtOCOccoovviereneere e 69
User Datagram ProtOCOI...........cceeiiiieeece ettt 70
S0 0 (=SS 70

Content

DEDUG SUPPOIT ...ttt 74
Using RL-TCPNet With RTXooviiiereeeeeese e 74
RL-TCPnet APPliCalioNScooeeieiiie e e 76
THVIAl FIlE TranSfer ..o 76
Adding the TETP SEIVICEcciiiieeeeeees s 76
I S = = SRR 77
WED SErVEr CONLENE.......oueeieeiiitiriesiesie ettt 78
AdAiNG WED PEJES........coueriiiiiiieiieieeeieees st 78
AddiNg HTML @S C COE........eeeeiieeeee e 79
Adding HTML With RL-FIaSh........ccoieeiereseeeeeeeese e 81
The Common Gateway INtErface. ... 82
()70 7= o oo o I Y 82
Data Input USing WED FOrmMS..........cooi ittt 84
Using the POST MEhOG.........c.oooiiiiieie e s 84
USiNg the GET MENOU..........ccoiiiiieieiceeeeese e 87
0L gTo I = Y= S o] o U 88
AJAX SUPPOIT .ottt s se e sb e b e n e s ne e 90
Simple Mail Transfer ClIENT ..o 94
Adding SMTP SUPPOIT ...c.veeieeeiiecie e seesies s see e esee e seesnessneeseeeeeesreeneeas 94
Sending aFixed Email MESSAgE.cccoiiieieeiieieese e 95
DYNAMIC MESSAJE.cviieieieieieieeie sttt st 96
I LTS S Y= P 98
Telnet Helper FUNCLIONS..........ooiiieiecec et 100
DINS ClIBNL....eeeitie ettt et e te e st esee s aae s be e beesbeesbeesaeeenseenreeteess 101
SOCKEL LIDIary ... 102
User Datagram Protocol (UDP) CommuniCationcccccvveeeveereeseeneenenn. 103
Transmission Control Protocol (TCP) Communication...........ccccceeeveiveeeenne. 105
DEPIOYMENT. ...ttt 108
SENTAl DITVELS ...ttt ettt te e seesaeeeennean 109
Chapter 5. RL-USB INtroduCtion..........ccccooeririnereeininese e 111
The USB Protocol — Key CONCEPLSeeviieeerieierie st 111
USB PhySical NEIWOIKoviiieiieieeese e 111
LOGICAl NEIWOIKooveiieeiiecie e st 112
USB Pipes ANd ENAPOINES......c.ccieieiiiieriesieeee et ee e ens 113
F 10] o 115
[SOCHIONOUS PIE.......cveiiiiieieiee et 115
BUIK PIPE ..ttt sttt e e nnennn 115
Bandwidth AHTOCATONcoeieeiiieee e 116
Device ConfigUIation.........cccuieeiiiieee e 117
DEVICE DESCIIPLON ...ttt 118

Configuration DESCIIPLONcivirrereeeeieeriesiesie e 119

Getting Started: Building Applications with RL-ARM

INEEITACE DESCITPION ...ttt 120
[STpTo]olol] o L1 DTS | o] (o S 121
RL-USB ...ttt sttt nne e ste e eneeneas 122
RL-USB DIiVEr OVEIVIBWccueiviiieieieeeeeeeie et 122
FIrSt USB PrOJECT.....c.eeeeeeiiiieriisie et 124
L0001 100 1> (o] o 1 124
EVENt HaNAIErS......ovoieeee e 125
USB DESCIIPLOIS ...ttt sttt sb et st be s 126
L= ST o oo g S 127
HUumMan INterface DEVICE.cc.eeieieeeee e 128
HID REPOIt DESCIPLONS.ccueiieriirierieieeeeeesie sttt 128
1 = | SRRSO 133
Enlarging the IN & OUT Endpoint Packet Sizes.........ccccceeveveveeveneeieeseene 134
e S (0] = [P RRSPR 136
U o Lo N O = S 138
COMPOSITE DEVICE....cceiieieeecieee ettt sneeeesee e 139
COMPLIANCE TESLING ...ttt 140
Chapter 6. RL-CAN INtroduCiONccveiririniniesieieeeeeesese s 141
The CAN Protocol — Key CONCEPLS........cccceveieeciecieeeesie et 141
CAN NOUE DESIGN ..ottt 142
CAN MESSATE FIaMES.....ccviieeeee ittt 143
CAN BUS ATDITIEliON ..ot 145
I O N D = 146
FITSE PrOJECT.....ceieeeeeeee e 146
(O N (N LY = AN S 147
Basic Transmit and RECEIVEccoiriiinirieree s 148
REMOLE REQUESL ...t 149
1O 1= o 0 =0 = 151

10 Chapter 1. Introduction

Chapter 1. Introduction

The last few years have seen an explosive growth in both the number and
complexity of ARM processor-based microcontrollers. This diverse base of
devices now offers the devel oper a suitable microcontroller for ailmost al
applications. However, thisrise in sophisticated hardware also calls for more and
more complex software. With ever-shorter project deadlines, it is becoming just
about impossible to develop the software to drive these devices without the use
of third-party middleware.

TheKeil Real-Time Library (RL-ARM) isa RTOS and Middleware
collection of easy-to-use middleware components Components

that are designed to work across many different]
microcontrollers. Thisallowsyou to learn the RTX RTOS Source Code

USB Device Interface

These two development tools allow you to
rapidly develop sophisticated software
applications across a vast range of ARM
processor-based microcontrollers. In this book,
we will look at each of the RL-ARM middleware components and see how to use
all the key featuresin typical applications.

software once and then use it multiple times. — %
The RL-ARM middleware integrates into the TCPnet Networking Suite |} 2.
Keil Microcontroller Development Kit °
(M DK-ARM) Flash File System g
H
i

CAN Interface

RL-ARM Overview

The RL-ARM library consists of Real-Ti Lib
five main components; a Flash- eal-Time Library

based file system, aTCP/IP Flash TCP/IP CAN use
networking suite, drivers for SVFS't'gm Networking Interface | DOV
USB and CAN, and the RTX
Kernel. Each of the middleware
components is designed to be
used with the Keil RTX real-time operating system. However, with the

exception of the CAN driver, each component may be used without RTX.

RTX Kernel

Getting Started: Building Applications with RL-ARM

11

RTX RTOS

Traditionally developers of

small, embedded applications RTX Kernel
have had to write virtually all the Memory Delay &| Event &
code that runs on the Mutex|nool Interval |Semaphore

microcontroller. Typically, this scheduler
isin the form of interrupt
handlers with amain
background-scheduling loop. While there is nothing intrinsically wrong with
this, it does rather missthe last few decades of advancement in program structure
and design. Now, for thefirst time, with the introduction of 32-bit ARM
processor-based microcontrollers we have low-cost, high-performance devices
with increasingly large amounts of internal SRAM and Flash memory. This
makes it possible to use more advanced software devel opment techniques.
Introducing a Real-Time Operating System (RTOS) or real-time executive into
your project development is an important step in theright direction. With an
RTOS, al the functional blocks of your design are devel oped as tasks, which are
then scheduled by RTX. Thisforces adetailed design analysis and consideration
of the final program structure at the beginning of the development. Each of the
program tasks can be developed, debugged, and tested in isolation before
integration into the full system. Each RTOStask isthen easier to maintain,
document, and reuse. However, using an RTOS is only half the story.
Increasingly, customers want products that are more complex in shorter and
shorter time. While microcontrollers with suitable peripherals are available, the
challenge is to devel op applications without spending months writing the low-
level driver code.

Flash File System

The RL-Flash file system allows
you to place a PC-compatible file
system in any region of a Standard C File I1/0 Functions
microcontroller’s memory. This
includes the on-chip and external File Table Flash Driver FAT12/16
RAM and Flash memory, as well
as SPI based Flash memory and
SD/MMC memory cards.

Flash File System

ROM RAINM Flash ROM SD/MMC

12

Chapter 1. Introduction

The RL-Flash file system comes with al the driver support necessary, including
low-level Flash drivers, SPI drivers, and MultiMedia Card interface drivers. This
gets the file system up-and-running with minimal fuss and allows you to
concentrate on devel oping your application software. In the past, the use of afull
file system in asmall, embedded microcontroller has been something of aluxury.
However, once you start devel oping embedded firmware with access to a small
file system, you will begin to wonder how you ever managed without it!

TCP/IP

The RL-TCPnet library isafull
networking suite written for
small ARM processor-based
microcontrollers specificaly. It
consists of one generic library CGI Scripting | TFTP Server | DNS Resolver
with dedicated Ethernet drivers
for supported microcontrollers
and agngle Conﬁguraﬂ onfile. Ethernet Modem UART | Debug UART
SLIP and PPP protocols are also
supported to allow UART-based
communication either directly from a PC or remotely via a modem.

TCPnet Networking Suite

HTTP Server | Telnet Server | SMTP Client

The RL-TCPnet library supports raw TCP and UDP communication, which
allows you to design custom networking protocols. Additional application layer
support can be added to enable common services, including SMTP clients to send
email notification, plus DNS and DHCP clients for automatic configuration. RL-
TCPnet can aso enable a microcontroller to be aserver for the TELNET, HTTP,
and File Transfer (FTP) protocols.

USB

The USB protocol is complex
and wide-ranging. To implement
a USB-based peripheral, you MSD Device | Audio Device
need a good understanding of the USB Core

USB peripheral, the USB USB Event Handler
protocol, and the USB host
operating system.

USB Device Interface (RL-USB)

USB Hardware Layer

Getting Started: Building Applications with RL-ARM

13

Typically, the host will beaPC. This means that you need to have a deep
knowledge of the Windows operating system and its device drivers. Getting all
of these elements working together would be a development project in its own.
Like the TCP/IPlibrary, the RL-USB driver is acommon software stack
designed to work across all supported microcontrollers. Although you can use
the RL-USB driver to communicate with a custom Windows device driver, it has
been designed to support common USB classes. Each USB class hasits own
native driver within the Windows operating system. This means that you do not
need to develop or maintain your own driver.

The class support provided with RL-USB includes Human Interface Device
(HID), Mass Storage Class (M SC), Communication Device Class (CDC), and
Audio Class. The HID Class allows you to exchange custom control and
configuration data with your device. The Mass Storage Class allows the
Windows operating system to access the data stored within the RL-Flash file
system in the same manner as a USB pen drive. The Communication Device
Class can be used to realize avirtual COM Port. Findly, the Audio Class alows
you to exchange streaming audio data between the device and a PC. Together
these four classes provide versatile support for most USB design requirements.

CAN

The RL-CAN driver isthe one
component of the RL-ARM CAN Interface
library that istightly coupled to

the RTX. The CAN driver GANDriver

consists of just six functions that RTX Memory Pool| RTX Messages
alow you toinitialize agiven

CAN peripheral, define, transmit (S0 (RET D HERER

and receive CAN message
objects, and exchange data with other nodes on the CAN network.

The RL-CAN driver has a consistent programming API for all supported CAN
peripherals, allowing easy migration of code or integration of several different
microcontrollersinto the one project. The CAN driver also uses RTX message
gueues to buffer, transmit and receive messages, ensuring ordered handling of the
CAN network data.

14

Chapter 1. Introduction

Installation

The RL-ARM is acollection of middleware components designed to integrate
with the Keil Microcontroller Development Kit (MDK-ARM). To use this book
you will need to have both the MDK-ARM and RL-ARM installed on your PC.
MDK-ARM may beinstalled from either CD-ROM, or may be downloaded from
theweb. Currently, RL-ARM may only be downloaded from the web.

Keil products are available on CD-ROM and via download from www.keil.com.
Updates to the related products are regularly available at www.keil.com/update.
Demo versions of various products are obtainable at www.keil.com/demo.
Additional information is provided under www .keil.com/arm.

Please check the minimum hardware and software requirements that must be
satisfied to ensure that your Keil development tools are installed and will
function properly. Before attempting installation, verify that you have:

= A standard PC running Microsoft Windows XP, or Windows Vista,

= 1GB RAM and 500 MB of available hard-disk space is recommended,

= 1024x768 or higher screen resolution; amouse or other pointing device,
= A CD-ROM drive.

Product Folder Structure

The seTuP program copies the devel opment tools into subfolders. The base
folder defaultsto c:\keiL. When the RL-ARM isinstalled, it integrates into the
MDK-ARM instalation. Thetable below outlines the key RL-ARM files:

File Type Path

MDK-ARM Toolset C:\KEIL\ARM

Include and Header Files C:\KEIL\ARM\RVxx\INC

Libraries C:\KEIL\ARM\RVxx\LIB

Source Code C:\KEIL\ARM\RL

Standard Examples C:\KEIL\ARM\Boards\manufacturer\board
Flash Programming C:\KEIL\ARM\FLASH

On-line Help Files and Release Notes C:\KEIL\ARM\HLP

Getting Started: Building Applications with RL-ARM 15

Last-Minute Changes

Aswith any high-tech product, last minute changes might not be included into
the printed manuals. These |ast-minute changes and enhancements to the
software and manuals are listed in the Release Notes shipped with the product.

Requesting Assistance

At Keil, we are committed to providing you with the best-embedded
development tools, documentation, and support. If you have suggestions and
comments regarding any of our products, or you have discovered a problem with
the software, please report them to us, and where applicable make sure to:

1. Read the section in this manual that pertains to the task you are attempting,

2. Check the update section of the Keil web site to make sure you have the latest
software and utility version,

3. Isolate software problems by reducing your code to as few lines as possible.

If you are still having difficulties, please report them to our technical support
group. Make sure to include your license code and product version number
displayed through the Help — About Menu of pVision. In addition, we offer the
following support and information channels, accessible at ww.keil.com/support.

1. The Support Knowledgebase is updated daily and includes the latest questions
and answers from the support department,

2. The Application Notes can help you in mastering complex issues, like
interrupts and memory utilization,

3. Check the on-line Discussion Forum,
4. Request assistance through Contact Technical Support (web-based E-Mail),

5. Finally, you can reach the support department directly via
support.intl @keil.com or support.us@keil.com.

16 Chapter 2. Developing With an RTOS

Chapter 2. Developing With an RTOS

In the course of this chapter we will consider the idea of using RTX, the Keil
small footprint RTOS, on an ARM processor-based microcontroller. If you are
used to writing procedural-based C code on microcontrollers, you may doubt the
need for such an operating system. If you are not familiar with using an RTOS in
real-time embedded systems, you should read this chapter before dismissing the
idea. The use of an RTOS represents a more sophisticated design approach,
inherently fostering structured code devel opment, which is enforced by the
RTOS Application Programming Interface (API).

The RTOS structure allows you to take an object-orientated design approach
while still programming in C. The RTOS aso provides you with multithreaded
support on asmall microcontroller. These two features create a shift in design
philosophy, moving us away from thinking about procedural C code and flow
charts. Instead, we consider the fundamental program tasks and the flow of data
between them. The use of an RTOS also has severa additional benefits, which
may not be immediately obvious. Since an RTOS-based project is composed of
well-defined tasks, using an RTOS hel ps to improve project management, code
reuse, and software testing.

The tradeoff for thisis that an RTOS has additional memory requirements and
increased interrupt latency. Typically, RTX requires between 500 Bytes and

5K Bytes of RAM and 5KBytes of code, but remember that some of the RTOS
code would be replicated in your program anyway. We now have a generation of
small, low-cost microcontrollers that have enough on-chip memory and
processing power to support the use of an RTOS. Developing using this
approach is therefore much more accessible.

Getting Started

This chapter first looks at setting up an introductory RTOS project for ARM7,
ARMO9, and Cortex-M based microcontrollers. Next, we will go through each of
the RTOS primitives and explain how they influence the design of our
application code. Finaly, when we have a clear understanding of the RTOS
features, we will take a closer look at the RTOS configuration file.

Getting Started: Building Applications with RL-ARM

Setting-Up a Project

The first exercise in the examples accompanying this book provides a PDF
document giving a detailed step-by-step guide for setting up an RTX project.
Here we will look at the main differences between a standard C program and an
RTOS-based program. First, our pVision project is defined in the default way.
This means that we start a new project and select a microcontroller from the
uVision Device Database®. Thiswill add the startup code and configure the
compiler, linker, simulation model, —

debugger, and Flash programming 39 Standard
algorithms. Next, we add an empty C '

module and save it as main.c to start a C- | - [E STM32F10xs
based application. Thiswill giveusa =8) mainc
project structure similar to that shown
on theright. A minimal application

=23 Configuration

]EIProject | {} Functions |B-:|-:|ks |

program consists of an Assembler file

for the startup code and a C module. Project

BT w105
The RTX configurationisheld in the £ Configuration
file RTX_Config.c that must be added to e
your project. Asitsnameimplies, 523 Source
RTX_Config.c holds the configuration - [main.c

settings for RTX. Thisfileis specific to | Eproject [[{} Fundtions | €3 Books |

the ARM processor-based
microcontroller you are using. Different versions of thefile are located in
C:\KEIL\ARM\STARTUP.

If you are using an ARM7 or ARM9-based microcontroller, you can select the
correct version for the microcontroller family you are using and RTX will work
“out-of-the-box”. For Cortex-M-based microcontrollers there is one generic
configuration file. We will examine thisfilein more detail |ater, after we have
looked more closely at RTX and understood what needs to be configured.

To enable our C code to access the RTX API, we need to add an include file to
all our application filesthat use RTX functions. To do this you must add the
following include file in main.

#include <RTL.h>

18

Chapter 2. Developing With an RTOS

We must let the pVision IDE utility Project x
know that we are using RTX so that it =1 [
can link in the correct library. Thisis |4X_Options for Target ‘RTOS. Alt:F7_|

done by selecting “RTX Kernel” in the
Optionsfor Target menu, obtained by § options for Target ‘Standard"

ri ght clicki ngon “RTOS’. Device Target | Output | Listing | User | CAC+s | Asm |
The RTX Kernel library isadded tothe | ' oroone ST

project by selecting the operating R
system in the dialog Options for Target. Operating system: R] ~ |

When using RTX with an ARM7 or ARM9 based microcontroller, calsto the
RTOS are made by Software Interrupt instructions (SW1). In the default startup
code, the SWI interrupt vector jumps to atight loop, which traps SWI calls. To
configure the startup code to work with RTX we must modify the SWI vector
codeto call RTX.

A part of RTX runsin the privileged supervisor mode and is called with software
interrupts (SWI). We must therefore disable the SWI trap in the startup code.
With Cortex-based microcontroller, the interrupt structure is different and does
not require you to change the startup code, so you can ignore this step.

Y ou must disable the default SWI handler and import the SWI_Handler used by
the RTOS, when used with ARM7 or ARMO.

IMPORT SWI_Handler

Undef Handler
;SWI_Handler
PAbt_Handler
DAbt Handler
IRQ Handler
FIQ Handler

Undef Handler

SWI_Handler ; Part of RTL
PAbt_Handler

DAbt Handler

IRQ Handler

FIQ Handler

twwwww

In the vector table, the default SWI_Handler must be commented out and the
SWI_Handler label must be declared as an import. Now, when RTX generates a
software interrupt instruction, the program will jump to the SWI_Handler in the
RTX library. These few steps are al that are required to configure a project to
use RTX.

Exercise: First Project

Thefirst RTOS exer cise guides you through setting up and debugging an RTX-
based project.

Getting Started: Building Applications with RL-ARM 19

RTX Kernel

RTX consists of a scheduler that supports round-robin, pre-emptive, and co-
operative multitasking of program tasks, as well astime and memory
management services. Inter-task communication is supported by additional
RTOS objects, including event triggering, semaphores, Mutex, and a mailbox
system. Aswe will see, interrupt handling can also be accomplished by
prioritized tasks, which are scheduled by the RTX kernel.

The RTX kernel contains a
scheduler that runs program code
astasks. Communication

Services

Objects

between tasks is accomplished Tasks Time
by RTOS objects such as events, Events Management
semaphores, Mutexes, and Scheduler
mailboxes, Additional RTOS Semaphore Managertani
services include time and IS

ISR Support

memory management and Message Passing

interrupt support.

Tasks

The building blocks of atypical C program are functions that we call to perform
a specific procedure and which then return to the calling function. In an RTOS,
the basic unit of executionisa“Task”. A task isvery similar to a C procedure,
but has some fundamental differences.

Procedure

unsigned int procedure (void) { __task void task (void) {
for (;;) {

return (val) ; }

} }

We aways expect to return from C functions, however, once started an RTOS
task must contain an endless loop, so that it never terminates and thus runs
forever. You can think of atask asamini self-contained program that runs
within the RTOS. While each task runsin an endless loop, the task itself may be
started by other tasks and stopped by itself or other tasks. A task isdeclared asa
C function, however RTX provides an additional keyword __ task that should be
added to the function prototype as shown above. This keyword tells the compiler

20

Chapter 2. Developing With an RTOS

not to add the function entry and exit code. This code would normally manage
the native stack. Since the RTX scheduler handles this function, we can safely
remove this code. This saves both code and data memory and increases the
overall performance of the final application.

An RTOS-based program is made up of anumber of tasks, which are controlled
by the RTOS scheduler. This scheduler is essentially atimer interrupt that allots
a certain amount of execution time to each task. So taskl may run for 100ms
then be de-scheduled to allow task2 to run for asimilar period; task 2 will give
way to task3, and finally control passes back to task1l. By allocating these slices
of runtime to each task in a round-robin fashion, we get the appearance of all
three tasks running in parallel to each other.

Conceptually we can think of each task as performing a specific functional unit
of our program, with all tasks running simultaneously. Thisleads usto a more
object-orientated design, where each functional block can be coded and tested in
isolation and then integrated into afully running program. This not only imposes
a structure on the design of our final application but also aids debugging, asa
particular bug can be easily isolated to a specific task. It also aids code reusein
later projects. When atask is created, it is alocated itsown task ID. Thisisa
variable, which acts as a handle for each task and is used when we want to
manage the activity of the task.

0S_TID idil, id2, id3;

In order to make the task-switching process happen, we have the code overhead
of the RTOS and we have to dedicate a CPU hardware timer to provide the
RTOStimereference. For ARM7 and ARM9 this must be atimer provided by
the microcontroller peripherals. 1n a Cortex-M microcontroller, RTX will usethe
SysTick timer within the Cortex-M processor. Each time we switch running
tasks the RTOS saves the state of all the task variablesto atask stack and stores
the runtime information about a
task in a Task Control Block. The
“context switch time”, that is, the Prioriy & State contoxt
time to save the current task state * g
and load up and start the next task,
isacrucia value and will depend
on both the RTOS kernel and the s —
design of the underlying hardware. Task

Task Control Block Task Stack

Getting Started: Building Applications with RL-ARM

21

Each task hasits own stack for saving its data during a context switch. The Task
Control Block is used by the kernel to manage the active tasks.

The Task Control Block contains information about the status of atask. Part of
thisinformation isitsrun state. A task can bein one of four basic states,
RUNNING, READY, WAITING, or INACTIVE. Inagiven system only one
task can be running, that is, the CPU is executing its instructions while all the
other tasks are suspended in one of the other states. RTX has various methods of
inter-task communication: events, semaphores, and messages. Here, atask may
be suspended to wait to be signaled by another task before it resumesits READY
state, at which point it can be placed into RUNNING state by the RTX scheduler.

At any moment a single task may be running. Tasks may also be waiting on an
OS event. When this occurs, the tasks return to the READY state and are
scheduled by the kernel.

Task Description

RUNNING The currently running TASK

READY TASKS ready to run

WAIT DELAY TASKS halted with a time DELAY

WAIT INT TASKS scheduled to run periodically

WAIT OR TASKS waiting an event flag to be set

WAIT AND TASKS waiting for a group event flag to be set
WAIT SEM TASKS waiting for a SEMAPHORE

WAIT MUT TASKS waiting for a SEMAPHORE MUTEX
WAIT MBX TASKS waiting for a MAILBOX MESSAGE
INACTIVE A TASK not started or detected

Starting RTX

To build asimple RTX-based program, we declare each task as a standard C
function and a TASK ID variable for each Task.

__task wvoid taskl (void);
__task void task2 (void) ;
OS_TID tskID1, tskID2;

After reset, the microcontroller enters the application through the main()
function, where it executes any initializing C code before calling the first RTX
function to start the operating system running.

22

Chapter 2. Developing With an RTOS

void main (void) {
IODIR1 = 0xO00FF0000; // Do any C code you want
os_sys_init (taskl); // Start the RTX call the first task

}

The os_sys init () function launches RTX, but only starts the first task running.
After the operating system has been initialized, control will be passed to this task.
When the first task is created it is assigned a default priority. If therearea
number of tasks ready to run and they all have the same priority, they will be
alotted run time in around-robin fashion. However, if atask with a higher
priority becomes ready to run, the RTX scheduler will de-schedule the currently
running task and start the high priority task running. Thisiscalled pre-emptive
priority-based scheduling. When assigning priorities you have to be careful,
because the high priority task will continue to run until it entersaWAITING
state or until atask of equal or higher priority is ready to run.

Tasks of equal priority will be 4
scheduled in around-robin —

fashion. High priority taskswill ~ Prem \
pre-empt low priority tasks and

enter the RUNNING state “ on i EEEN G e) B BEE

den’]and” . Timeslice

Two additional callsare
availableto start RTX;
0s_sys init_prio(taskl) will start the RTOS and create the task with a user-
defined priority. The second OS call isos _sys init_user(taskl, & stack,
Sack Sze). Thisstartsthe RTOS and defines a user stack.

Time

Creating Tasks

Once RTX has been started, the first task created is used to start additional tasks
required for the application. While the first task may continue to run, it is good
programming style for thistask to create the necessary additional tasks and then
delete itself.

task void taskl (void) {

tskID2 = os_tsk create (task2,0x10); // Create the second task
// and assign its priority.
tskID3 = os_tsk create (task3,0x10); // Create additional tasks

// and assign priorities.
os_tsk delete self (); // End and self-delete this task

}

Getting Started: Building Applications with RL-ARM

23

Thefirst task can create further active tasks with the os_tsk_create() function.
This launches the task and assignsits task ID number and priority. Inthe
example above we have two running tasks, task2 and task3, of the same priority,
which will both be allocated an equal share of CPU runtime. While the
os_tsk_create() call is suitable for creating most tasks, there are some additional
task creation calls for special cases.

It is possible to create atask and pass a parameter to the task on startup. Since
tasks can be created at any time while RTX isrunning, atask can be created in
response to a system event and a particular parameter can be initialized on
startup.

tskID3 = os_tsk create ex (Task3, priority, parameter);

When each task is created, it is also assigned its own stack for storing data during
the context switch. Thistask stack is afixed block of RAM, which holds all the
task variables. Thetask stacks are defined when the application is built, so the
overall RAM requirement iswell defined. Ideally, we need to keep this as small
as possible to minimize the amount of RAM used by the application. However,
some tasks may have alarge buffer, requiring a much larger stack space than
other tasks in the system. For these tasks, we can declare alarger task stack,
rather than increase the default stack size.

static U64 stk4 [400/8];

A task can now be declared with a custom stack size by using the
os _tsk create user() call and the dedicated stack.

tskID4 = os_tsk create user (Task4, priority, &stk4, sizeof (stk4));

Finally, there is a combination of both of the above task-creating calls where we
can create atask with alarge stack space and pass a parameter on startup.

static U64 stk5 [400/8];

tskID5 = os_tsk_create user ex (Tsk5, prio, &stk5, sizeof (stk5), param);

Exercise: Tasks

This exercise presents the minimal code to start the RTOS and create two
running tasks.

24

Chapter 2. Developing With an RTOS

Task Management

Once the tasks are running, there are asmall number of RTX system calls, which
are used to manage the running tasks. It is possible to elevate or lower atask’s
priority either from another function or from within its own code.

OS_RESULT os_tsk_prio (tskID2, priority);
OS_RESULT os_tsk prio_self (priority);

Aswell as creating tasks, it isalso possible for atask to deleteitself or another
active task from the RTOS. Again we use the task ID rather than the function
name of the task.

OS_RESULT = os_tsk delete (tskID1);
os_tsk delete self ();

Finaly, thereis a special case of task switching where the running task passes
control to the next ready task of the same priority. Thisisused toimplement a
third form of scheduling called co-operative task switching.

os_tsk pass (); // switch to next ready to run task

Multiple Instances

One of the interesting possibilities of an RTOS is that you can create multiple

running instances of the same base task code. For example, you could write a
task to control a UART and then create two running instances of the same task
code. Here each instance of UART_Task would manage a different UART.

tskID3_0 = os_tsk create_ex (UART Task, priority, UART1) ;

Exercise: Multiple instances

This exercise creates multiple instances of one base task and passes a parameter
on startup to control the functionality of each instance.

Time Management

Aswell as running your application code as tasks, RTX also provides some
timing services, which can be accessed through RTX function calls.

Getting Started: Building Applications with RL-ARM

25

Time Delay

The most basic of these timing servicesis asimple timer delay function. Thisis
an easy way of providing timing delays within your application. Although the
RTX kernel sizeis quoted as 5K bytes, features such as delay loops and simple
scheduling loops are often part of a non-RTOS application and would consume
code bytes anyway, so the overhead of the RTOS can be lessthan it initialy

appears.

void os_dly wait (unsigned short delay time)

This call will place the calling task into the WAIT_DELAY state for the
specified number of system timer ticks. The scheduler will pass execution to the
next task in the READY state.

During their lifetime, tasks move

through many states. Here, a Block Timeslice
running task is blocked by an — —

os dly wait() call soitentersa . oy —_—
WAIT state. When the delay

expires, it movesto the READY
state. The scheduler will place it

in the RUN state. If itstime slice
expires, it will move back to the
READY state.

TIME

When the timer expires, the task will leave the WAIT_DELAY state and move to
the READY state. The task will resume running when the scheduler movesit to
the RUNNING state. If the task then continues executing without any further
blocking OS calls, it will be de-scheduled at the end of itstime slice and be
placed inthe READY state, assuming another task of the same priority is ready
to run.

Exercise: Time Management

This exercise replaces the user delay loops with the OS delay function.

26

Chapter 2. Developing With an RTOS

Periodic Task Execution

We have seen that the scheduler runs tasks with a round-robin or pre-emptive
scheduling scheme. With the timing services, it is also possible to run a selected
task at specific timeintervals. Within atask, we can define a periodic wake-up
interval.

void os_itv_set (unsigned short interval time)

Then we can put the task to sleep and wait for the interval to expire. This places
the task into the WAIT_INT state.

void os_itv wait (void)

When the interval expires, the task moves from the WAIT_INT to the READY
state and will be placed into the RUNNING state by the scheduler.

Exercise: Interval

This exercise modifies the two-task example to use interval service so that both
tasks run at a fixed period.

Virtual Timer

Aswell as running tasks on a defined periodic basis, we can define any number
of virtual timers, which act as countdown timers. When they expire, they run a
user call-back function to perform a specific action. A virtual timer is created
with the os_timer_create() function. This system call specifies the number of
RTOS system timer ticks before it expires and avalue “info”, which is passed to
the callback function to identify the timer. Each virtual timer isalso allocated an
OS _|ID handle, so that it can be managed by other system calls.

OS_ID os_tmr create (unsigned short tcnt, unsigned short info)

When the timer expires, it calls the function os_tmr_call(). The prototype for
this function islocated in the RTX_config.c file.

Getting Started: Building Applications with RL-ARM 27

void os_tmr call (Ul6 info)

switch (info) {
case 0x01:
. // user code here
break ;
1
1

This function knows which timer has expired by reading the info parameter. We
can then run the appropriate code after the “case” statement.

Exercise: Timer

This exercise modifies the two-task-program to use virtual timersto control the
rate at which the LEDs flash.

Idle Demon

The final timer service provided by RTX is not really atimer, but thisis probably
the best placeto discussit. If, during our RTOS program, thereis no task
running and no task ready to run (e.g. they are all waiting on delay functions),
then RTX uses the spare runtime to call an “Idle Demon” that is located in the
RTX_config.c file. Thisidle codeisin effect alow priority task within the RTOS,
which only runs when nothing else is ready.

__task void os_idle demon (void) {
for (;;)

}
}

// user code here

Y ou can add any code to this task, but it has to obey the same rules as user tasks.

Exercise: Idle Demon

This example demonstrates how to add code to the idle task, so that the
application can perform “ book keeping” tasksin the spare cycles not consumed
by the main application.

28

Chapter 2. Developing With an RTOS

Inter-Task Communication

So far we have seen how application code can be written as independent tasks
and how we can access the timing services provided by RTX. Inared
application, we need to be able to communicate between tasks in order to make
an application useful. To enable this, atypical RTOS supports severa different
communication objects, which can be used to link the tasks together to form a
meaningful program. RTX supports inter-task communication with events,
semaphores, mutexes, and mailboxes.

Events

When each task isfirst created, it has sixteen event flags. These are stored in the
Task Control Block. Itispossibleto halt the execution of atask until a particular
event flag or group of event flags are set by another task in the system.

Each task has 16 event flags. A
task may be placed into awaiting run T1
state until a pattern of flagsis set
by another task. When this
happens, it will return to the
READY state and wait to be
scheduled by the kerndl.

16 Event Flags «—] T2

Set Flags

The two event wait systemcalls ™" “

suspend execution of the task —
and placeit into the WAIT_EVNT state. By using the AND or OR version of the
event wait call, we can wait for a group of event flags to be set or until one flag
inaselected group is set. Itisalso possible to define a periodic timeout after
which the waiting task will move back to the READY state, so that it can resume
execution when selected by the scheduler. A value of oxrFrrr defines an infinite
timeout period.

OS_RESULT os_evt wait and (unsigned short wait flags,
unsigned short timeout) ;

OS_RESULT os_evt wait or (unsigned short wait_ flags,
unsigned short timeout) ;

Getting Started: Building Applications with RL-ARM 29

Any task can set the event flags of any other task in a system with the
os_evt_set() RTX function call. We usethetask ID to select the task.

void os_evt_set (unsigned short event_flags, OS_TID task);

Aswell as setting atask’s event flags, it is also possible to clear selected flags.

void os_evt clr (Ulé6é clear flags, OS_TID task);

When atask resumes execution after it has been waiting for an os_evt_wait_or()
function to complete, it may need to determine which event flag has been set.
The os_evt_get() function allows you to determine the event flag that was set.

Y ou can then execute the correct code for this condition.

which flag = os_evt_get ();

Exercise: Events

This exercise extends the simple two-task-example and uses event flags to
synchronize the activity between the active tasks.

RTOS Interrupt Handling

The use of event flags is a simple and efficient method of controlling actions
between tasks. Event flags are also an important method of triggering tasks to
respond to interrupt sources within the ARM processor-based microcontroller.
Whileit is possible to run C code in an interrupt service routine (ISR), thisis not
desirable within an RTX-based application. Thisis because on an ARM7/9
based device you will disable further general -purpose interrupts until you quit the
ISR. Thisdelaysthetimer tick and disruptsthe RTX kernel. Thisislessof a
problem on Cortex-M profile-based devices, as the Cortex-M interrupt structure
supports nested interrupts. However, it is still good practice to keep the time
spent in interrupts to a minimum.

A traditional nested interrupt ISR
scheme supports prioritized ‘_

interrupt handling, but has .f,sﬁ

unpredictable stack ISR [>
requirements. ovel0
Main[| ':;i

» Time

30

Chapter 2. Developing With an RTOS

ARM7/9-based microcontrollers do not support nested interrupts without
additional software to avoid potential deadlocks and any system based on nested
interrupts has an unpredictable stack usage. With an RTX-based application, itis
best to implement the interrupt service code as atask and assign it a high priority.
Thefirst line of code in the interrupt task should make it wait for an event flag.
When an interrupt occurs, the ISR simply sets the event flag and terminates. This
schedules the interrupt task, which services the interrupt and then goes back to
waiting for the next event flag to be set.

Within the RTX RTOS, interrupt R I
codeisrun astasks. The ISR I F_'r
interrupt handlers signal the tasks o }
: Tasks £
when an interrupt occurs. The menya | S (1 Pr—
task priority level defines which Toas | NN ‘
; \ A .
task gets scheduled by the kernel. Tasks | | ["N
» Time
The RTX RTOS has an event set
call, which is designed for use within an interrupt handler.
void isr evt set (unsigned short event flags, OS_TID task) ;
A typical task intended to handle interrupts will have the following structure:
void Task3 (void) {
while (1) {
os_evt _wait or (0x0001, Oxffff); // Wait until ISR triggers an event
- // Handle the interrupt
} // Loop and go back to sleep
}
The actual interrupt source will contain a minimal amount of code.
void IRQ Handler (void) _ irg ({
isr evt set (0x0001, tsk3); // Signal Task 3 with an event
EXTINT = 0x00000002; // Clear the peripheral interrupt flag
VICVectAddr = 0x00000000; // Signal end of interrupt to the VIC

}

Exercise: Interrupt Events

This exercise demonstrates how to integrate interrupt handling into an RTX-
based application by using event flags.

Getting Started: Building Applications with RL-ARM

31

Task Priority Scheme

When writing an RTOS-based application you must have a clear idea of how you
will prioritize tasks. The FIQ interrupt isthe highest priority interrupt on ARM
CPUs (anon-maskable interrupt is available in Cortex processors). The FIQ is
not handled by RTX and so there is no overhead in serving it.

The remaining interrupts are handled as IRQ interrupts, which can be used to

trigger tasks (as discussed above). After the IRQ interrupts, important

background tasks may be assigned an appropriate priority level. Findly, the
round robin tasks can be assigned priority level one with theidle task running at

priority zero.

A typical RTOS priority scheme
places the FIQ and IRQ triggered
tasks at highest priority, followed
by high priority background
tasks, with round robin tasks at
lowest user task priority. The
idletask is at priority zero and
will use up any spare cycles.

PRIORITY

Any task that is above the round
robin priority level must be a
self-blocking task, i.e. do ajob

FIQ

IRQ
TASKS

HIGH
PRIORITY
BACKGROUND
TASKS

ROUND ROBIN
TASKS

IDLE TASK

MUST BLOCK

and halt. If any high priority task does not block, then it will run forever, halting

any lower priority tasks.

32

Chapter 2. Developing With an RTOS

Semaphores

Like events, semaphores are a method of synchronizing activity between two or
more tasks. Put simply, a semaphore is a container that holds a number of
tokens. Asatask executes, it will reach an RTOS call to acquire a semaphore
token. If the semaphore contains one or more tokens, the task will continue
executing and the number of tokens in the semaphore will be decremented by
one. If there are currently no tokensin the semaphore, the task will be placed in
aWAITING state until atoken becomes available. At any point in its execution,
atask may add atoken to the semaphore causing its token count to increment by
one.

Semaphores are used to control
access to program resources.
Before atask can access a
resource, it must acquire atoken.
If noneisavailable, it waits.
When it is finished with the
resource, it must return the
token.

!

The diagram illustrates the use of
a semaphore to synchronize two
tasks. First, the semaphore must
be created and initialized with an
initial token count. In this case,
the semaphore isinitialized with asingle token. Both tasks run and reach a point
in their code where they will attempt to acquire atoken from the semaphore. The
first task to reach this point will acquire the token from the semaphore and
continue execution. The second task will also attempt to acquire atoken, but as
the semaphore is empty, it will halt execution and be placed into aWAITING
state until a semaphore token is available.

Meanwhile, the executing task can release a token back to the semaphore. When
this happens, the waiting task will acquire the token and leave the WAITING
state for the READY state. Onceinthe READY state, the scheduler will place
the task into the RUN state so that task execution can continue. Although
semaphores have asimple set of RTX API calls, they can be one of the more
difficult RTX objectsto fully understand. In this section, we will first look at
how to add semaphores to an RTOS program and then go on to look at the most
useful semaphore applications.

Getting Started: Building Applications with RL-ARM

33

To use asemaphore in RTX you must first declare a semaphore container:

0OS_SEM <semaphore>;

Then within atask, the semaphore container can be initialized with a number of
tokens.

void os_sem init (OS_ID semaphore, unsigned short token count) ;

It isimportant to understand that semaphore tokens may also be created and
destroyed as tasks run. So for example, you can initialize a semaphore with zero
tokens and then use one task to create tokens into the semaphore while another
task removes them. This allows you to design tasks as producer and consumer
tasks.

Once the semaphoreisinitialized, tokens may be acquired and sent to the
semaphore in asimilar fashion as event flags. The os_sem wait() call isused to
block atask until a semaphore token is available, like the os_evnt_wait_or() cal.
A timeout period may also be specified with oxFrrF being an infinite wait.

OS_RESULT os_sem wait (OS_ID semaphore, unsigned short timeout)

When atoken is available in the semaphore awaiting task will acquire the token,
decrementing the semaphore token count by one. Once the token has been
acquired, the waiting task will moveto the READY state and then into the RUN
state when the scheduler allocatesit run time on the CPU.

When the task has finished using the semaphore resource, it can send atoken to
the semaphore container.

OS_RESULT os_sem_send (OS_ID semaphore)

Like events, interrupt service routines can send semaphore tokens to a semaphore
container. Thisalows interrupt routinesto control the execution of tasks
dependant on semaphore access.

void isr sem send (OS_ID semaphore)

Exercise: Semaphores

Thisfirst semaphore exer cise demonstrates the basic configuration and use of a
semaphore.

34

Chapter 2. Developing With an RTOS

Using Semaphores

Although semaphores have a simple set of OS calls, they have a wide range of
synchronizing applications. This makes them perhaps the most challenging
RTOS objects to understand. In this section, we will look at the most common
uses of semaphores. Some are taken from “The Little Book Of Semaphores’ by
Allen B. Downy, and may be freely downloaded from the URL given in the
bibliography at the end of this book.

Signaling

Synchronizing the execution of two tasksis the simplest use of a semaphore:

}

os_sem semB;

_task void taskl (void) { __task void task2 (void) {
os_sem _init (semB, 0);
while (1) { while (1) {
os_sem _send (semB) ; os_sem wait (semB, OXFFFF) ;
FuncA () ; FuncB () ;

} }
}

In this case, the semaphore is used to ensure that the code in FuncA() is executed
before the code in FuncB().

Multiplex

A multiplex semaphore limits the number of tasks that can access a critical
section of code. For example, routines that access memory resources and can
support alimited number of calls.

os_sem Multiplex;

void taskl (void) _ task {

}

os_sem init (Multiplex, 5);

while (1) {
os_sem wait (Multiplex, OxFFFF) ;
ProcessBuffer ();
os_sem send (Multiplex) ;

}

Getting Started: Building Applications with RL-ARM

35

Here, the multiplex semaphore has five tokens. Before atask can continue, it
must acquire atoken. Once the function finished, the token is sent back. If more
than five tasks are calling ProcessBuffer (), the sixth task must wait until a
running task finishes and returnsits token. Thus, the multiplex ensures that a
maximum of 5 instances of the ProcessBuffer () function may be called at any one
time.

Exercise: Multiplex

This exercise demonstrates the use of a multiplex to limit the number of
illuminated LEDs.

Rendezvous

A more generalized form of semaphore signaling isarendezvous. A rendezvous
ensures that two tasks reach a certain point of execution. Neither may continue
until both have reached the rendezvous paint.

os_sem Arrivedl, Arrived2;
__task void taskl (void) { __task void task2 (void) {

os_sem init (Arrivedl, 0);
os_sem init (Arrived2, 0);

while (1) { while (1) {
FuncAl () ; FuncBl () ;
os_sem_send (Arrivedl) ; os_sem_send (Arrived2) ;
os_sem wait (Arrived2, OxFFFF) ; os_sem wait (Arrivedl, OxFFFF) ;
FuncA2 () ; FuncB2 () ;

} }

} }

In the exampl e above, the two semaphores ensure that both tasks will rendezvous
and proceed then to execute FuncA2() and FuncB2().

Exercise: Rendezvous

This exercise uses rendezvous semaphores to synchronize the activity of two
tasks.

36

Chapter 2. Developing With an RTOS

Barrier Turnstile

Although arendezvousis very T Barrier Point
.. asks
useful for synchronizing the
execution of code, it only works
for two functions. A barrierisa ' " N
more generalized form of T3
rendezvous, which worksto
synchronize multiple tasks. A T2 . —
barrier is shared between a
defined number of tasks. As T e —"
each task reaches the barrier it

will halt and de schedule. When
all of the tasks have arrive at the
barrier it will open and all of the tasks will resume execution simultaneously.

A J

Time

The barrier uses semaphores to build a code object called aturnstile. The
turngtileislike agate. Initialy the turnstile gate islocked. When all of the tasks
have arrived at the turnstile, it will open allowing all of the tasks to continue
‘simultaneously’. Oncethe critical code has been executed each task will pass
through a second exit turnstile. The exit turnstile is used to lock the first entry
turnstile and reset the barrier object so the barrier can be reused.

The barrier object is a sophisticated use of semaphores so it its worth spending
sometime studying it. The barrier object uses three semaphores, the entry
turnstile, Entry_Turnstile, the exit turnstile, Exit_Turnstile, and a Mutex, which
ensures that only one task at atime executes the critical code section. The
general structure of the barrier is:

while (1)
Entry Turnstile code
Synchronised code section
Exit Turnstile code

}

Getting Started: Building Applications with RL-ARM

37

The code for the entry turnstile is duplicated in each of the participating tasks:

os_sem_ init (Mutex, 1);
os_sem_init (Entry Turnstile, 0);
os_sem init (Exit Turnstile, 1);
count = 0;

os_sem wait (Mutex, Oxffff); // Begin critical section
count = count+l;
if (count==4) {

os_sem wait (Exit Turnstile, Oxffff);

os_sem send (Entry Turnstile);

}

os_sem_send (Mutex) ; // End critical section
os_sem wait (Entry Turnstile, Oxffff); // Turnstile gate
os_sem send (Entry Turnstile) ;

In this example, a barrier synchronizes four tasks. Asthefirst task arrives, it will
increment the count variable. Execution continues until it reaches the turnstile
gate os_sem wait(Entry_Turnstile,0xffff). At thispoint, the Entry_Turnstile
semaphore is zero. Thiswill cause the task to halt and de-schedule. The same
will happen to the second and third task. When the fourth task enters the
turnstile, the value of count will become four. This causes the

if(count == 4) statement to be executed. Now, atoken is placed into the

Entry Turnstile semaphore. When the fourth task reaches the

0s_sem wait(Entry_Turnstile,Oxffff) statement, atoken is available, so it can
continue execution. The turnstile gate is now open. Once the fourth task has
passed through the gate, it places atoken back into the Entry_Turnstile
semaphore. This allows awaiting task to resume execution. As each waiting
task resumes, it writes atoken into the Entry_Turnstile semaphore. The Mutex
semaphore locks access to the critical section of the turnstile. The Mutex
semaphore ensures that each task will exclusively execute the critical section. In
the critical section, the last arriving task will aso remove atoken from
Exit_Turnstile. This closesthe gate of the Exit_Turnstile, as we shall see below.

os_sem wait (Mutex, Oxffff); // Begin critical section
count = count-1;
if (count==0) {

os_sem wait (Entry Turnstile, OXffff);
os_sem send (Exit Turnstile);

os_sem_send (Mutex) ; // End critical section
os_sem wait (Exit Turnstile, Oxff£ff);); // Turnstile gate
os_sem send (Exit Turnstile);

38

Chapter 2. Developing With an RTOS

Semaphore Caveats

Semaphores are an extremely useful feature of any RTOS. However,
semaphores can be misused. Y ou must always remember that the number of
tokens in a semaphore is not fixed. During the runtime of a program, semaphore
tokens may be created and destroyed. Sometimes thisis useful, but if your code
depends on having afixed number of tokens available to a semaphore, you must
be very careful to return tokens always back toit. Y ou should also rule out the
possibility of creating additional new tokens.

Mutex

Mutex stands for “Mutual Exclusion”. A Mutex isaspecialized version of a
semaphore. Like a semaphore, a Mutex is a container for tokens. The difference
isthat a Mutex isinitialized with one token. Additional Mutex tokens cannot be
created by tasks. The main use of aMutex isto control access to a chip resource
such as a peripheral. For thisreason, a Mutex token is binary and bounded.
Apart from this, it really worksin the same way as a semaphore. First, we must
declare the Mutex container and initialize the Mutex:

os_mut_init (OS_ID mutex) ;

Then any task needing to access the peripheral must first acquire the Mutex
token:

os_mut_wait (OS_ID mutex, Ulé timeout) ;

Finally, when we are finished with the peripheral, the Mutex must be released:

os_mut_release (OS_ID mutex) ;

Mutex use is much more rigid than semaphore use, but is a much safer
mechanism when controlling absol ute access to underlying chip registers.

Exercise: Mutex

This exercise uses a Mutex to control access to the microcontroller UART.

Getting Started: Building Applications with RL-ARM 39

Mutex Caveats

Clearly, you must take care to return the Mutex token when you are finished with
the chip resource, or you will have effectively prevented any other task from
accessing it. You must also be careful about using the os_task_delete() call on
functions that control a Mutex token. RTX is designed to be a small footprint
RTOS. Consequently, there is no task deletion safety. This meansthat if you
delete atask that is controlling a Mutex token, you will destroy the Mutex token
and prevent any further access to the guarded peripheral.

Mailbox

So far, al of the inter-task communication methods have only been used to
trigger execution of tasks: they do not support the exchange of program data
between tasks. Clearly, in area program we will need to move data between
tasks. This could be done by reading and writing to globally declared variables.
In anything but a very simple program, trying to guarantee data integrity would
be extremely difficult and prone to unforeseen errors. The exchange of data
between tasks needs a more formal asynchronous method of communication.

RTX contains a mailbox system that buffers messages into mail slots and
provides a FIFO queue between the sending and receiving tasks. The mailbox
object supports transfer of single variable data such as byte, integer and word-
width data, formatted fixed length messages, and variable length messages. We
will start by having alook at configuring and using fixed length messaging. For
this example, we are going to transfer a message consisting of afour-byte array
that contains nominally ADC results data and a single integer of 1/0O port data.

unsigned char ADresult [4];
unsigned int PORTO;

To transfer this data between tasks, we need to declare a suitable data mailbox.
A mailbox consists of a buffer formatted into a series of mail slots and an array
of pointersto each mail dlot.

A mailbox object consists of a memory block formatted into message buffers and
a set of pointers to each buffer.

40

Chapter 2. Developing With an RTOS

To configure a mailbox object [MPTR | 0x23 0x44 0x95 0x26
we must first declare the
message pointers. Here we are
using 16 mail slots. Thisisan
arbitrary number and varies
depending on your requirements,
but 16 isatypical starting point.
The message pointers are
declared as an array of unsigned
integers using the following
macro:

os_mbx declare (MsgBox, 16) ;

Next, we must declare a structure to hold the data to be transferred. Thisisthe
format of each message slot:

typedef struct
unsigned char ADresult [4];
unsigned int PORTO;

} MESSAGE;

Once we have defined the format of the message slot, we must reserve a block of
memory large enough to accommodate 16 message slots:

_declare box (mpool, sizeof (MESSAGE), 16);

This block of memory then has to be formatted into the required 16 mail slots
using afunction provided with the RTOS:

_init_box (mpool, sizeof (mpool), sizeof (MESSAGE)) ;

Now, if we want to send a message between tasks, we can create a pointer of the
message structure type and allocate it to amail dot.

MESSAGE *mptr;
mptr = _allocbox (mpool) ;

Next, we fill this mail slot with the data to be transferred:

for (int 1=0; i<4; i++) {
mptr->ADresult [i] = ADresult (i);
mptr->PORTO = IOPINO;

}

Getting Started: Building Applications with RL-ARM 41

Then we send the message.

os_mbx send (MsgBox, mptr, Oxffff);

In practice, thislocks the mail slot protecting the data, and the message pointer is
transferred to the waiting task. Further messages can be sent using the same
calls, which will cause the next mail slot to be used. The messages will form a
FIFO queue. In the receiving task, we must declare areceiving pointer with the
message structure type. Then we wait for a message with the os_mxb_wait() call.
This call allows us to hominate the mailbox that we want to use, provide the
pointer to the mail slot buffer, and specify atimeout value.

MESSAGE *rptr;

When the message is received, we can simply access the data in the mail slot and
transfer them to variables within the receiving task.

pwm_value = *rptr->ADresult [0];

Finally, when we have made use of the data within the mail slot it can be released
so that it can be reused to transfer further messages.

_free box (mpool, rptr);

The following code shows how to put al thistogether. First the initializing code
that may be called before RTX is started.

typedef struct
unsigned char ADresult [4];
unsigned int PORTO;
} MESSAGE;
unsigned int mpool [16 * sizeof (MESSAGE) / 4 + 3];
_declare box (mpool, sizeof (MESSAGE), 16);

main() {

_init box (mpool, sizeof (mpool), sizeof (MESSAGE)) ;
os_sys_init (Send Task) ;

Chapter 2. Developing With an RTOS

A task sending a message:

__task void Send Task (void) {

MESSAGE *mptr;

os mbx init (MsgBox, sizeof (MsgBox)) ;
tskl os_tsk self ();

tsk2 os_tsk create (Receive Task, 0x1);

while (1) {

mptr = alloc box (mpool) ; // Acquire a mailbox
for (i=0; i < 4 ; i++) {
Mptr->ADresult [i] = ADresult (i); // Fill it with data

Mptr->PORTO = IOPINO;

}

os_mbx_send (MsgBox, mptr, Oxffff); // Send the message
1
1

A task to receive the message:

__task void Receive Task (void) {

MESSAGE *rptr;
while (1) {

os_mbx wait (MsgBox, &rptr, Oxffff); // Wait for a message arrives
pwm value = *rptr->ADresult [0]; // Read the message data
_free box (mpool, rptr); // Free the mail slot

// Use the data in this task

Exercise: Mailbox

This exercise presents the minimum code to initialize a mailbox and then pass a
formatted message between two tasks.

Getting Started: Building Applications with RL-ARM

43

Task Lock and Unlock

In areal application, it is often necessary to ensure that a section of code runs as
a contiguous block, so that no interrupts occur whileit is executing. Inan RTX-
based application, this cannot be guaranteed, as the scheduler is continually
interrupting each task. To ensure a continuous execution, you must use the task
lock and task unlock system calls, which disable and re-enable the scheduler:

tsk lock ();
do_critical section () ;
tsk unlock () ;

The critical section of code must be kept to a minimum, as along period with the
scheduler disabled will disrupt the operation of the RTOS. The source code for
the tsk_lock() and tsk_unlock() functions on the OS LOCK and OS UNLOCK
macros are located in the RTX_config.c file and may be modified to meet any
specia requirements.

Configuration

So far, we have looked at the RTX API. Thisincludes task management
functions, time management, and inter-task communication. Now that we have a
clear idea of exactly what the RTX kernel is capable of, we can take a more
detailed ook at the configuration file. Asmentioned at the beginning, you must
select the correct RTX_config.c for the microcontroller that you areusing. All
supported microcontrollers have a pre-configured configuration file, so RTX only
needs minimal configuration.

=) Task, Definitions [l Task Definitions

- Murmber of concurrent running tasks 7 - Mumber of concurrent rurning kasks 10

. Mumber of tasks with user-provided skack.] - Murnber of tasks with user-provided stack i}

- Task stack size [bytes] 200 - Task stack size [bytes] 200

- Check For the stack overflow [+« - Check for the stack overflow v

. Mumber of user timers] - Runin privieged mode [
[=]- System Timer Configuration Muriber of user timers o]

- RTH Kernel timer Timer 0 [=)- SysTick Timer Configuration

- Timer clock walue [Hz] 12000000 Timer clock value [Hz] F2O00000

... Timer tick value [us] 10000 . Tirner tick walue [us] 10000
[=J-Riound-Robin Task switching ¥ = Round-Robin Task switching I

... Round-Robin Timeout [ticks] 5 ‘... Round-Rabin Timeout [ticks] [

Example for ARM7, ARM3 Example for Cortex-M

Like the other configuration files, the RTx_config.c file is atemplate file that
presents all the necessary configurations as a set of menu options.

44

Chapter 2. Developing With an RTOS

Task Definitions

In the Task Definitions section, we define the basic resources that will be
required by the tasks. For each task, we allocate a default stack space (in the
above example thisis 200 bytes). We also define the maximum number of
concurrently running tasks. Thus, the amount of RAM required for the above
example can be calculated easily as 200 x 6 = 1,200 bytes. If some of our tasks
need alarger stack space, they must be started with the os_task create_usr() AP
call. If we are defining custom stack sizes, we must define the number of tasks
with custom stacks. Again, the RAM requirement can be calculated easily.

During development, RTX can be set up to trap stack overflows. When this
option is enabled, an overflow of atask stack space will cause the RTX kernel to
call the os_stk_overflow() function that is located in the RTx_config.c file. This
function gets the TASK ID of the running task and then sitsin an infinite loop.
The stack checking option isintended for use during debugging and should be
disabled on the final application to minimize the kernel overhead. However, it is
possible to modify the os_stack overflow() function, if enhanced error protection
isrequired in the final release.

Thefinal option in the Task Definitions section alows you to define the number
of user timers. It isacommon mistake to leave this set at zero. If you do not set
this value to match the number of virtual timersin use by your application, the
os_timer() API callswill fail to work.

For Cortex-based microcontrollers the Task Definitions section has one
additional option. Disabling the “run in privileged mode” tick box allows the
RTOS kernel to run in Handler Mode with privileged access, while the user tasks
run in Thread Mode with unprivileged access. This means that the RTX kernel
has full access to the microcontroller resources and its own stack space while the
application code has limited access to the microcontroller resources. For
example, it cannot access the Cortex interrupt control registers. This can be very
useful for safety critical code where we may need to partition the user task code
from the kernel code.

Getting Started: Building Applications with RL-ARM

45

System Timer Configuration

The system timer configuration section defines which on-chip timer will be used
to generate a periodic interrupt to provide atime base for the scheduler. On
ARM?7 and ARM9-based microcontroller, you need to make use of a general-
purpose timer available in the silicon. With a Cortex-based microcontroller,
thereis no need to select atimer, as the Cortex processor contains a dedicated
SysTick timer, which isintended to be used by an RTOS. In both cases, we must
next define the input frequency to the timer. For an ARM7 or ARM9-based
microcontroller thiswill generally be the advanced peripheral bus frequency. For
a Cortex-M X-based microcontroller it will generally be the CPU frequency.
Next, we must define our timer tick rate. Timer interrupts are generated at this
rate. On each timer tick, the RTOS kernel will check for RTOS features
(scheduler, events, semaphores, etc) and then schedul e the appropriate action.
Thus, a high tick rate makes the RTOS more sensitive to events, at the expense of
continually interrupting the executing task. The timer tick value will depend on
your application, but the default starting value is set to 10ms.

Round Robin Task Switching

Thefinal configuration setting allows you to enable round robin scheduling and
define the time dice period. Thisisamultiple of the timer tick rate, so in the
above example, each task will run for five ticks or 50ms before it will pass
execution to another task of the same priority that is ready to run. If no task of
the same priority is ready to run, it will continue execution.

Scheduling Options

RTX allows you to build an application with three different kernel-scheduling
options. These are:

= Pre-emptive scheduling,

= Round rabin scheduling, and

= Co-operative multi-tasking.

46

Chapter 2. Developing With an RTOS

Pre-emptive Scheduling

If the round robin option is disabled in the RTX_config.c file, each task must be
declared with a different priority. When the RTOS is started and the tasks are
created, the task with the highest priority will run.

In apre-emptive RTOS, each

task has a different priority level o

and will rununtil itispre-empted | Preemstion

or has reached a blocking OS h- B L |
cal. E— ‘L
Thistask will run until it blocks, .

i.e itisforced to wait for an

event flag, semaphore, or other object. When it blocks, the next ready task with
the highest priority will be scheduled and will run until it blocks, or a higher
priority task becomes ready to run. Therefore, with pre-emptive scheduling we
build a hierarchy of task execution, with each task consuming variable amounts
of run time.

Round Robin Scheduling

A round-robin-based scheduling scheme can be created by enabling the round
robin option in the RTx_config.c file and declaring each task with the same
priority.

In around robin RTOS tasks will

run for afixed period, or time PRIORITY o o
slice, or until they reach a T, I
bl OCking OScall. T EHE I N
In this scheme, each task will be TIME

alotted a fixed amount of run time before execution is passed to the next ready
task. If atask blocks before itstime dice has expired, execution will be passed to
the next ready task.

Getting Started: Building Applications with RL-ARM 47

Round Robin Pre-emptive Scheduling

As discussed at the beginning of this chapter, the default scheduling option for
RTX isround robin pre-emptive. For most applications, this is the most useful
option and you should use this scheduling scheme unless there is a strong reason
to do otherwise.

Co-operative Multitasking

A final scheduling option is co-operative multitasking. In this scheme, round
robin scheduling is disabled and each task has the same priority. This means that
the first task to run will run forever unlessit blocks. Then execution will passto
the next ready task.

In aco-operative RTOS, each

taSk W||| run until |t I’eaCheS a PRIORITY Tasks block or call
blocking OS call or uses the e
OS—tSk—pa$() call. | m] m [m[m=]n]|
Tasks can block on any of the e

standard OS objects, but thereis
aso an additional system call, os task pass(), that schedules atask to the
READY state and passes execution to the next ready task.

Priority Inversion

Finally, no discussion of RTOS scheduling would be complete without
mentioning priority inversion.

A priority inversion isacommon - TLockouttimo .

RTOS design error. Here, ahigh

priority task may become —
delayed or permanently blocked :; T e

by amedium priority task. T bocks and | |73 completes and T1

SRIORITY 1
PRICRIT waits for T3 1 1 I I resumes
! |

In a pre-emptive scheduling _— T
system, it is possible for a high
priority task T1 to block while it

calsalow priority task T3 to perform acritical functlon before T1 continues.

48

Chapter 2. Developing With an RTOS

However, the low priority task T3 could be pre-empted by a medium priority task
T2. Now, T2 isfreeto run until it blocks (assuming it does) before allowing T3
to resume compl eting its operation and allowing T1 to resume execution. The
upshot isthe high priority task T1 that is blocked and that becomes dependent on
T2 to complete before it can resume execution.

os_tsk prio (tsk3, 10); // raise the priority of task3
os_evt set (0x0001, tsk3); // trigger it to run
os_evt wait or (0x0001, Oxffff); // wait for Task3 to complete
os_tsk prio (tsk3, 1); // lower its priority

The answer to this problem is priority elevation. Before T1 calls T3 it must raise
the priority of T3toitslevel. Once T3 has completed, its priority can be lowered
back to itsinitial state.

Exercise: Priority Inversion

This exercise demonstrates a priority inversion and priority el evation.

Getting Started: Building Applications with RL-ARM 49

Chapter 3. RL-Flash Introduction

This chapter discusses configuring and using the RL-Flash embedded file system.
To many experienced developers of small embedded systems, the concept of
using afile system may be considered something of aluxury. However,
technology has moved on, and, as we saw in the first chapter, ARM processor-
based microcontrollers now have the processing power to make using an RTOS
practical. They also have the memory resources to support the use of embedded
file systems. Adding afile system to a small-embedded system allows you to
build applications that are far more complex.

The file system can be used to store program data during deep power saving
modes, or for holding program constants, or even for storing firmware upgrades
for abootloader. In short, afile systemis anew and extremely useful tool for
developers of small, embedded systems.

The RL-Flash file system allows you to place a file system in most common
memory typesincluding SRAM, Parallel Flash, Serial Flash, and SD/MMC
cards. Inthe case of SD/MMC cards, FAT12, FAT16, and FAT32 are supported.
Aswewill seein later chapters, the file system can be accessed through the USB
Mass Storage Class and through Ethernet with the Trivial File Transfer Protocol
(TFTP). This provides an easy and well-understood method of accessing your
data. Throughout this chapter, we will first discuss configuring a RAM-based
file system that occupies the internal SRAM of a small microcontroller. Then we
will use thisfile system to review the ANSI file 1/O functions available within
RL-Flash. Intheremainder of the chapter, we will discuss configuring the file
system for the remaining memory formats.

Getting Started

Inthisfirst section, we will look at configuring the file system to use the internal
RAM of atypical ARM processor-based microcontroller. Although thisis not
usually practical in real embedded systems, as al data would be lost once power
isremoved from the microcontroller, it does give us an easy starting point with
which to practice our file handling skills.

Chapter 3. RL-Flash Introduction

Setting-Up the File System

The RL-Flash file system can be used standalone or in conjunction with RTX.
Thefile system library functions are re-entrant and thread safe. Therefore, with
RTX, any task can accessthe file system. Note that, if the code is build with the
MDK-ARM, MicroLIB is not supporting the stdiib functions used by thefile
system, and so you must use the default ARM Compiler libraries.

The RL-Flash file system can use on-chip or external SRAM. If an external
SRAM is used, provide the initializing code to configure the external bus of the
microcontroller. I1n the examples below, we configure the file system to use the
internal RAM of atypical microcontroller.

== RAM File System
=-£5 Source
- [#] main.c
=-£3 Configuration -- Stack Configuration (Stack Sizes in Bytes)
- [£] File_Config.c [=I-Heap Configuration
Retarget.c i ieHeap Size (in Bytes) 00000 1000
- [# pczaons T @ Clock Setup 2
i FS_ARM_L.lb - MM Setup 2

The minimal configuration of the RL-FlashFSfile

system consists of its library and a configuration file. Application
Set the project heap size to a minimum of ox1000. File - Config.c
Our first file system project consists of the startup code FS_ARM_L. Lib or
and the Retarget.c library support file. Also, add the file FS_CM3.Lib
system library Fs_ArM_L.lib for ARM7/9-based devices SRAM
and Fs_cwma.lib for Cortex-M-based devices. Thefilesare
located in the library directory, i D m
such as c:\KEIL\ARM\RV31\LIB fOr _

- 5P Flash Drrive -

the 3.1 compiler version, where

asFile_config.c islocated in SR LAM Drive v
C\KEIL\ARM\RL\FLASHFS\SRC. - Target device Base address 04000 4000
Once these files are part of the - Device Size in bytes C0000 4000
project, create amodule, main.c - Mumber of Sectars 32

that contains the source code. - Memary Card Drive r

All the necessary configuration . DieFault Drive RLAM
isdone in the startup code and . CPU Clock Frequency [Hz] E000000a

the File_config.c file.

Getting Started: Building Applications with RL-ARM

51

The file system buffers datain dynamically allocated memory, so we must
reserve heap space in the startup code.

In File_config.c, enable the drive type we

want to use and set its parameters. If Drive Letter Physical Media
severa drives are used, adefault drive E- Parallel Flash
can aso be defined. Itispossibleto s: Serial (SPI) EEPROM
enabl e the file system volumes and place

them on different physical media, i Pardliol SRAM
including internal/external parallel Flash M: MM/SD Card

memory, SPI EEPROM, internal or
external parallel SRAM, and MultiMedia/SD memory cards. When configured,
each drive has a default drive letter as shown in the table.

We will discuss each of these formats in turn, but for now we will define afile
system in on-chip RAM. Thisis quick and simple to configure and can be
debugged in both real target hardware viaa ULINK® USB-JTAG Adapter and in
simulation. Once the project has been defined and all of the modules have been
added, we simply need to configure the base address of the file system in RAM,
its sizein memory and the number of sectors. Thefile system may be located in
any valid region of RAM and has a minimum size of 16K. The number of
sectors that you have depends on how you intend to use the file system. If you
intend to have asmall number of large files, then select a small sector number.
If, on the other hand, you expect to create alarge number of small files, then
select alarge number of sectors. You can select between 8, 16, 32, 64, and 128
sectors per volume drive. Once configured, we can add the necessary code to
initialize the volume for use within our application code.

if (fcheck ("R:") != 0) { // check for a formatted drive
if (fformat ("R:") != 0) { // format the drive
// error handling code
1

}

The fcheck() function can be used to determine if there is a valid formatted
volume present. The fformat() function can be used at any timeto
format/reformat the drive. After formatting all the drive memory contents will be
set to oxo0.

Exercise: First File System

Thisfirst file system project guides you through setting up a RAM-based file
system. This can run on real hardware or within the pVision Smulator.

52

Chapter 3. RL-Flash Introduction

File I/O Routines

Once the file system has been configured, we can manipulate files.

Function Description

fopen Creates a new file or opens an existing file.

fclose Writes buffered data to a file and then closes the file.
fflush Writes buffered data to a file.

To create afile, open afile on the volume and define ahandler to it. This
handler, with which we can read and write to the file, is a pointer to the open file.

#include <stdio.h>
FILE *Fptr;

Include the stdio.h library to define our file handler astype FILE. Next, create a
file and check that it has opened. fopen() requires a string for the file name and
an access attribute, which can be “w” write, “a’ append, or “r” read.

Fptr = fopen ("Test.txt","w");

If the file cannot be created or opened, aNULL pointer is returned.

if (Fptr == NULL) ({
i // error handler

}

Once you have finished using the file, you must close it by calling fclose(). Upto
this point, all data written to the file is buffered in the heap space. When you
close thefile, the datais written to the physical storage media. Consider this
carefully if you have multiple file streams or are storing large streams of data.

fclose (Fptr);

Once we have created afile, anumber of functions help us work with it.

Function Description

feof Reports whether the end of the file stream has been reached.
ferror Reports whether there is an error in the file steam.

fseek Moves the file stream in pointer to a new location.

ftell Gets the current location of the file pointer.

rewind Moves the file stream in file pointer to the beginning of the file.

Getting Started: Building Applications with RL-ARM 53

feof() returns zero until the end of fileisreached. Notice, it is possible to read
past the end of afile. While reading or writing data, ferror() reports access errors
in the file stream. Once an error has occurred, ferror() returns the error code

until thefileis closed, or until the file pointer is rewound to the start of thefile.
fseek(), ftell(), and rewind() position the file pointer within the file. fseek()
moves the file pointer to alocation within afile. Thislocation is defined relative
to an origin, which can be the start or the end of the file, or the current file
pointer position. ftell() reports the current location of the file pointer relative to
the beginning of thefile. rewind() placesthe file pointer at the start of thefile.

rewind (Fptr) ; // Place file-pointer at the start of file
fseek (Fptr, 4, SEEK CUR); // Move 4 chars forward rel. to the FP location
location = ftell (Fptr); // Read the file pointer location

Four standard functions exist to write data to afile stream in byte, character,
string, or formatted output format. Similarly, four analogous functions exist to
read data.

Function Description

fwrite Writes a number of bytes to the file stream.
fputc Writes a character to the file stream.
fputs Writes a string to the file stream.
fprintsf Writes a formatted string to the file stream.
fread Reads a number of bytes from the file stream.
fgetc Reads a character from the file stream.
fgets Reads a string from the file stream.
fscanf Reads a formatted string from the file stream.
while (!feof (Fptr))
byte = fgetc (Fptr);
if (ferror (Fptr)) {

i // Error handling
1
1

Exercise: File Handling

This project contains several examples, which demonstrate creating files,
reading and writing data, and managing the data within afile.

54

Chapter 3. RL-Flash Introduction

Volume Maintenance Routines

Asyou create and update files, it isimportant to maintain the health of the drive.
A number of functions maintain the volume and manipul ate the content of the
drive. Thefile system provides five drive and three file maintenance functions.

Function Description

fformat Formats the drive.

fcheck Checks the consistency of the drive.

ffree Reports the free space available in the drive.
fanalyse Checks the drive for fragmentation.

fdefrag Defragments the drive.

We have aready used the fcheck() and fformat() functions. The additional drive
maintenance functions include ffree() that will report the available free disk space
and fanalyse() that can be used to check the fragmentation level of a selected
drive. Thisfunction returns avalue 0 — 255 to indicate the current level of drive
fragmentation. Once a drive becomes too fragmented, the fdefrag() function may
be used to reorganize the volume memory and maximize the available space.

if (ffree ("R:") < THRESHOLD) { // When free space reaches a minimum
if (fanalyse ("R:") > 100) { // Check the fragmentation
fdefrag ("R:"); // If necessary defrag the drive

}
}

Function Description

fdelete Deletes a selected file.

frename Renames a selected file.

ffind Locates files by nhame or extension.

Three functions are also provided to allow you to manage the files stored within
the drive volume. The functions frename() and fdelete() allow you to rename and
delete a selected file within a chosen drive.

frename ("R:Testl.txt", "New Test.txt"); // Rename file
fdelete ("R:Test2.txt"); // Delete file

Y ou can also search the contents of the drive with the ffind() function. Thiswill
find files that match a specified pattern. When afileisfound, its details are
reported in a structure called info.

Getting Started: Building Applications with RL-ARM 55

//Create a file to store the directory listing

FINFO info;
Fptr = fopen ("directory.log", "w");
while (ffind ("R:*.*", &info) == 0) { // Search drive for all files

fprintf (Fptr, "\nname %s %5d bytes ID: %04d",
info.name, info.size, info.fileID) ;

fclose (Fptr);

In addition to containing records for file details, the FINFO structure al'so
contains fields to hold a timestamp of the creation time or modification time of
thefile.

typedef struct { // Search info record
S8 name [256]; // Name
U32 size; // File size in bytes
Ulée filelID; // System Identification
U8 attrib; // Attributes
struct {
U8 hr; // Hours [0..23]
U8 min; // Minutes [0..59]
U8 sec; // Seconds [0..59]
U8 day; // Day [1..31]
U8 mon; // Month [1..12]
Ulé year; // Year [1980..2107]
} time; // Create/Modify Time
} FINFO;

The time and calendar information is provided through two functions held in the
ﬂ|efsjnne£.

U32 fs get _time (void) ;
U32 fs _get_date (void);

If you want to use time and date information within your application, you must
modify these two functions to access the real-time clock on your microcontroller.
Y ou must also add the code to initialize the real-time clock. Thefilefs_time.c is
located in c:\KEIL\VARM\RL\FLASHFS\SRC. Y ou can rebuild the library with the
project in C:\KEIL\ARM\RL\FLASH to provide a custom library for your application.
When rebuilding the library, be careful to select either the ARM_LE (ARM7/9
Little-Endian) or Cortex asthe target. Thefs_time.c functions are not supported if
you are using a RAM-based file system.

Exercise: Drive Functions

This project contains several examples, which demonstrate maintaining and
working with a drive volume.

56

Chapter 3. RL-Flash Introduction

Flash Drive Configuration

Although a RAM-based file system can be battery-backed, or can be used to store
temporary files during the run time of an application, we usually think of afile
system as having non-volatile storage. To thisend, we can configure the file
system to use theinternal Flash memory of a microcontroller, or external parallel
Flash, which is memory-mapped onto the microcontroller’ s external bus.

First, modify the File_config.c file.

: . . [=)-Flash Drive |7
Thistime select the Flash drive Target device Base address 030000 S000
as the target drive' Once é----Device Size in bytes 00001 0000

. Initial Content of Erased Mamory xFF
%I eCted’ we mua_ defl ne the .. Device Description File F5_FlashDew.h
start. Next, configurethetarget — im.seiriash oiive r
base address and drive size. This = rone F
- Mernory Card Drive
ShOUId map OntQ the Flag’\ , .. Default Drive Flash
sectors of the microcontroller’s . CPU Clock Frequency [He] 48000000

memory. Next, we must add the
programming a gorithms for the internal Flash memory. These algorithms are
defined for supported microcontrollers and are located in
C:\KEIL\ARM\RL\FLASHFS\FLASH.

Each subdirectory contains the necessary support files for a given microcontroller
or parallel Flash device. Each of these directories contains Fs_Flashpev.h and
Fs_FlashPrg.c. Copy thesefilesto your project directory and add Fs_FlashPrg.c tO
your project. If thereisno direct support for your particular microcontroller, do
not be concerned; we will look at developing Flash drivers next.

To use parallel Flash as afile system we

] Application
must add two new files:
File - Config.C FS Flash.h
1. Thers_Flash.h include file that contains a FS_ARM_L. Lib or FS_CM3.Lib
mapping of the physical Flash sectors. Flash_Page.C
2. TheFlash_page.c file that contains the low Parallel Flash Memory
level Flash write and erase routines.

Thefile Fs_rlashPrg.c provides the necessary Flash programming algorithm and
FS_FlashDev.h provides the mapping to the physical Flash sectors. The FlashDev.h
file maps al of the available Flash sectors to the file system by default. We must
modify thisfile to map only the sectors that are actually being used by our file
system.

Getting Started: Building Applications with RL-ARM 57

// Flash sector definitions in Flash Page.c

//

#define FLASH DEVICE \
DFB (0x008000, 0x000000), \ /* Sector size, Start address */
DFB (0x008000, 0x008000), \ /* Sector size, Start address */

#define FL_NSECT 2

// File Config.c as displayed as in the pVision Configuration Wizard

//
Traget device Base address 0x0000 8000
Device Size in bytes 0x0001 0000

Each physical Flash sector used by the file system must be included in the
FLASH_DEVICE definition. Each sector definition includes the size of the
sector and its address as an offset from the target device base addressthat isset in
file config.h. In the example above we are defining afile system located at the
32K B boundary of size 64KB. Inthe physical Flash memory on the
microcontroller, this occupies two Flash sectors each of 32KB. Finally, we must
set the FL_NSECT define to the number of physical Flash sectors used by thefile
system in this case two.

Once you have added these files to your project and made the necessary
configuration changes, the Flash file system isready to use. The function calls
that we used for the RAM-based system work in exactly the same way for the
Flash-based system. Before using the Flash-based file system, the application
code must call finit() before performing any other file system operations.

void main (void) {
finit () ;

}

Exercise: Flash File System

This exercise demonstrates how to locate a file systemin the internal Flash
memory of an ARM processor-based microcontroller.

58

Chapter 3. RL-Flash Introduction

Adapting Flash Algorithms for RL-Flash

If RL-Flash does not provide direct support for your microcontroller or the
paralel Flash on your board, it is possible to adapt the programming algorithms,
used by the Keil ULINK USB-JTAG adapter family, to use them as drivers for
the Flash file system. The ULINK family Flash programming algorithms are
located in C:\KEIL\ARM\FLASH.

For each microcontroller, the ULINK programming algorithms are included in
two files: FlashPrg.c and Flashpev.c. Copy these filesto a new directory and
rename FlashPrg.c t0 FS_FlashPrg.c.

Thisfile contains the basic low-level programming algorithm required by thefile
system. To make the programming algorithms compatible with the file system
you must make the following changes. First, change the include file name from:

#include "..\FlashOS.H"
to #include <File Config.hs.

Next, rename the following functions:

from int Init (unsigned long adr, unsigned long clk, unsigned long fnc)
to int fs Init (U32 adr, U32clk),

from int EraseSector (unsigned long adr)
to int fs_EraseSector (U32 adr),

and
int ProgramPage (unsigned long adr, unsigned long sz, unsigned char *buf)
to int fs_ProgramPage (U32 adr, U32 sz, U8 *buf).

Finally, delete the functions Uninit() and EraseChip().

Depending on the underlying Flash technology, you may need to modify the
program page function. Thiswill depend on the write granularity of the Flash
memory. Generally, you can use the program page function without
modification if the Flash memory can be written with aword at atime.

However, you will need to add the packed attribute to the data buffer to alow for
unaligned buffer access. Change

M1l6 (adr)
to M1lé6 (adr)

((unsigned short *) buf);
((__packed unsigned short *) buf);

*
*

If the write granularity of the Flash memory islarger than aword, i.e. the Flash
memory has a minimum write page size of 128 bytes, it will be necessary to

Getting Started: Building Applications with RL-ARM

59

provide some extra code to manage the Flash page size. Typically, this code has
to read the current data stored in the Flash page, concatenate this with the new
data stored in the file system buffer, and then write the updated page to the Flash
memory. The code below can be used as a starting point for such adevice.

#define PAGE SZ 1024 // Page Size
U32 Page [PAGE _SZ/4]; // Page Buffer

int fs ProgramPage (U32 adr, U32 sz, U8 *buf)
unsigned long 1i;

for (1 = 0; 1 < ((sz+1)/2); i++) {
M16 (adr & ~3) = CMD_PRGS; // Write Program Set-up Command
M16 (adr) = *((_ packed unsigned short *) buf); // Write 2 byte data
if (WaitWithStatus(adr & ~3) & (PS | SP)) // Unsuccessful

return (1) ;

buf += 2;
adr += 2;

1

return (0) ; // Done successfully

}

In addition to the programming agorithms, you will need to define the Flash
sector definitionsin FS_FlashDev.h.

Thefile Flashpev.c contains the sector definitions for the ULINK programming
algorithms, so you can use this as abasis for the Fs_rFlashpev.h file or aternatively
you can modify an existing Fs_rlashDev.h file. Either way the Flashpev.h file must
conform to the format described above.

If you are using the internal microcontroller Flash memory, you should locate the
file system into a region where there are multiple small sectors, as thiswill
reduce the amount of erasing and buffering required. Also, since the RL-Flash
file system does not support wear leveling, you must bear in mind an estimated
number of writes to the file system over the life time of the final product.
Typically, microcontroller Flash memory israted at 100K write cycles. If you
are likely to exceed this, you should consider using an SD/MMC card since these
formats support wear leveling in hardware.

60

Chapter 3. RL-Flash Introduction

MultiMedia Cards

The easiest way to add a large amount of low cost data storage to a small
microcontroller system is through a Secure Digital (SD) or Multi Media Card
(MMC). These cards are available in ever increasing densities at ever lower
prices. Although they are available from a wide range of manufacturers, the
cards conform to a standard specification that defines the interface protocol
between the microcontroller and the memory card. The SD and MMC protocols
alow the microcontroller to communicate in a serial SPI mode at 25K Bytes/sec
or through a 4-bit-wide bus at 100K Bytes/sec. In order to use the memory card
in parallel mode, the microcontroller must have a dedicated Multimedia Card
Interface (MCI) peripheral. If thisisthe case, adedicated driver for supported
microcontrollersis provided in c:\KEIL\ARM\RL\FLASHFS\DRIVERS.

Simply select the appropriate MCI driver and add this to your project as shown
below:

=-;J 5D File System

Application El+E3 Source Files
File - Config.C . E] maine (1-Memory Card Drive ~
[=-£5 Configuration Files File Data Cach
i File_Corfig.c — @ e Liata Lache 4KE
FS_ARM_L. Lib or T e { [3-Relocate Cache Buffer I
FS CM3.Lib Retarget.c :
— LI LPC2300.5 i Cache Buffer address 0%7FDO 0000
SPI / Driver Ea Library Default Drive Mernory Card
: FS_ARM_L.lib i CPU Clock Frequency [Hz] EO000000
SD / MM Card o [£] MCI_Driver.c

To configure RL-Flash to use an SD\MM card add the MCI or SPI driver for
your microcontroller and configure File_Config.c to use the memory card. In
File_Config.c we must enable the memory card and select it as the default drive. It
is possible to configure the memory card based file system to use an additional
cache of RAM within the microcontroller. This can be from 1K up to 32KBytes
insize. Itisredly only necessary to enable this option if you are using a
dedicated MCI peripheral. With the cache enabled, the MCI peripheral is able to
perform multiple sector writes and multiple sector reads. If you are using an SPI
peripheral to communicate with the SD/MMC card, you will not get any
significant performance gains with the cache enabled. The RL-Flash makes use
of the Direct Memory Access (DMA) peripherals within supported
microcontrollersto stream data to and from the SD/MMC card. If the DMA is
limited to certain regions of memory, the “relocate buffer cache” option allows
you to force the file buffer cache into a suitable region. Do check that thisis
correct for your particular microcontroller.

Getting Started: Building Applications with RL-ARM 61

From this point onwards, the file system API can be used as normal. However,
as we are communicating with an external memory card, which may have some
timing latencies, it may fail the finit() call. To ensure that the file system always
initializes correctly, it is advisable to allow for retries as shown below.

count = 3;
while (finit() !=
if (! (count--))
errorflag = 1;
break;
1
1

0) {
{

By default, the file system uses the FAT16 file format. It ispossible to enable
FAT32 support for SD/MM C-based file systems. A memory card can be
formatted with a FAT32 file system as follows:

fformat ("M:SD_CARD / FAT32");

A full erase of the card can also be performed during aformat as follows:

fformat ("M:SD _CARD / WIPE") ;

If your microcontroller does not have a dedicated MCI periphera, thenitis
possible to configure the file system library to communicate with the memory
card in SPI mode. SPI driver files are provided in the same file system drivers
directory. You simply need to add the SPI driver in place of the MCI driver, in
order to configure your microcontroller to access the memory card in SPI mode.

Exercise:. MMC-Based File System

This project demonstrates configuration of a memory-card-based file system,
using either a dedicated MCI peripheral or SPI interface.

62

Chapter 3. RL-Flash Introduction

Serial Flash

The file system can a so be placed on a seria
Flash connected to the SPI port. The same
SPI drivers used for the memory card can be File - Config.C FS Flash.h
reused to provide low-level accessto the FS_ARM_L.Lib or FS_CM3.Lib
Flash memory. However, unlike the
SD/MMC memory, thereis no common
communication protocol. Therefore, we SPI Driver
need to provide an intermediate driver that
provides the necessary protocol commands to communicate with the SPI
memory.

Application SPI

FS_SPI_FlashPrg.C

The protocol fileis very similar to the parallel Flash driver files and can be found
iN C:\KEIL\ARM\RL\FLASHFS\FLASH.

Here select the directory named after the Flash device you intend to use and copy
the contents to your project directory. The files contained in the device directory
are: FS_SPI_FlashDev.h and FS_SPI_FlashPrg.c.

The Fs_spPI_FlashDev.h file contains a description of the physical Flash sectors and
the Fs_sPI_FlashPrg.c module contains the erase and programming algorithms
customized to the Flash device. The functionsin the Fs_spi_FlashpPrg.c file
communicate with the SPI device through the low-level SPI drivers. However,
an additional simple function is required to control the SPI slave select line.
Since the implementation of this function will depend on the microcontroller you
are using and your hardware layout, you will need to implement this function
yourself. The pseudo-code for this function is shown below.

void spi ss (U32 ss) {
if (ss) {
Set Slave select high
} else {
Set Slave select low
}

}

Getting Started: Building Applications with RL-ARM

Chapter 4. RL-TCPnet Introduction

One of the key middleware components in the RL-ARM library isthe RL-
TCPnet networking suite. RL-TCPnet has been specifically written for small,
ARM-based, embedded microcontrollers, is highly optimized, has a small code
footprint, and gives excellent performance. In this chapter, we will first review
the TCP/IP protocol and then examine each feature of RL-TCPnet. Each of the
exercises accompanying this chapter show minimal examples intended to
demonstrate one aspect of RL-TCPnet. Full examples can be found in the board
examples directory C:\KEIL\ARM\BOARDS\<vendor>\<board name>\RL\TCPNET. The
code size for each of these programsis asfollows:

Demo Example ROM Size (KB) RAM Size (KB)
HTTP Server (without RTX Kernel) 25.6 20.0
Telnet Server 20.4 20.0
TFTP Server 20.6 24.7
SMTP Server 16.7 195
DNS Resolver 12.7 19.6

TCP/IP — Key Concepts

TCP/IPisasuite of protocols designed to support local and wide area
networking. In order to build a TCP/IP based application you do not need to
fully understand all the protocols within the TCP/IP stack. However, you do
need to understand the basic concepts in to configure your system correctly.

Network Model

The TCP/IP network model is split into four layers that map on to the 1SO seven-
layer model as shown below.

The network access layer consists of:

= the physical connection to the network.
= the packetizing of the application data for the underlying network.
= theflow control of the data packets over the network.

64

Chapter 4. RL-TCPnet Introduction

In atypica microcontroller-based system, this layer corresponds to the Ethernet
MAC with PHY chip and the low-level devicedriver. The TCP/IP stack handles
the transport and network routing layers.

P

ISO 7-Layer Model I Internet 4-Layer Model) Em;:;cllg‘:joggjstem
\ \
r o '
Application Application
r :’
Presentation Application
’ -
Session
> TCP/IP Stack
Transport Transport or Service
»
Network I Network or Routing
o <>
Data Link Ethernet Controller
i = Network Access or Similar
Physical Hardware
. 7 e o N >

The network layer handles the transmission of data packets between network
stations using the Internet Protocol (1P). The transport layer provides the
connection between application layers of different stations. Two protocols; the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP)
handle this. The application layer provides access to the communication
environment from your user application. This accessisin the form of well-
defined application layer protocols such as Telnet, SMTP, and HTTP. Itis
possible to define your own application protocol and communicate between
nodes using custom TCP and UDP packets.

The main three protocols used to transfer application data are: the Internet
Protocal (IP), the Transmission Control Protocol (TCP), and the User Datagram
Protocol (UDP). A typical application will also require the Address Routing
Protocol (ARP) and Internet Control Message Protocol (ICMP). In order to
reduce the size of a TCP/IP implementation for a small microcontroller, some
embedded stacks only implement a subset of the TCP/IP protocols. Such stacks
assume that communication will be between a fully implemented stack, i.e. aPC
and the embedded node. The RL-TCPnet isafull implementation that allows the
embedded microcontroller to operate as a fully functional internet station.

Getting Started: Building Applications with RL-ARM 65

Ethernet and IEEE 802.3

Today’ s most dominant networking transport layer for local area networksis
Ethernet (or rather Ethernet |1 to be exact). The Ethernet header contains a
synchronization preamble, followed by source and destination addresses and a
length field to denote the size of the data packet.

Ethernet Header 46 to 1500 Bytes Data Checksum

The Ethernet dataframe is the transport mechanism for TCP\IP data over a Local
Area Network.

The datain the information field must be between 46 and 1500 octets long. The
final field in the data packed is the Frame Check Sequence, whichisa Cyclic
Redundancy Check (CRC). This CRC provides error checking over the packet
from the start of the destination address field to the end of the information field.

TCP/IP Datagrams

In Ethernet networks, the Ethernet data packet is used as the physical
transmission medium and several protocols may be carried in the information
section of the Ethernet packet. For sending and receiving data between nodes,
the information section of the Ethernet packet contains a TCP/IP datagram.

Layer2 Header IP Header I TCP Packet Checksum

The Layer2 frame (Ethernet) encapsulates the TCP/IP datagrams.

Internet Protocol

The Internet Protocol is the basic transmission datagram of the TCP/IP suite. It
is used to transfer data between two logical 1P addresses. Onitsown, it is a best-
effort delivery system. This meansthat | P packets may be lost, may arrive out of
sequence, or may be duplicated.

There is no acknowledgement to the sending station and no flow control. The IP
protocol provides the transport mechanism for sending data between two nodes
on a TCP/IP network.

66

Chapter 4. RL-TCPnet Introduction

The IP protocol supports [)
message fragmentation and re- .
assembly: for a small, embedded {
node, this can be expensivein [
terms of RAM used to buffer
messages. The IP protocol rides [
within the Ethernet information (

. Interrel
o Header Type of Service Total Length

Length

Identification Flags Fragment Offset

<
Time-to-Live | Protocal Total Length

Source |P Addrass

Destination IP Address

frame as shown below.

Options Padding

The Internet Protocol datagram

1P Data

e A A A A A A

provides station-to-station

delivery of data, independent of
the physical network. It does not
provide an acknowledge or

resend mechanism. Etheret l cos]

The Internet Protocol Header contains a source and destination |P address. The
IP addressis a 32-bit number that is used to uniquely identify a node within the
internet. Thisaddressisindependent of the physical networking address, in our
case the Ethernet station address. In order for IP packets to reach the destination,
adiscovery processis required to relate the | P address to the Ethernet station
address.

Address Resolution Protocol

The Address Resol ution Protocol (ARP) is used to discover the Ethernet address

of astation on alocal network and relate thisto the IP address. ARP can be used
on any network that can broadcast messages. The ARP has its own datagram that
is held within the Ethernet frame.

) Hardware Type Protocol Requesting Solution
The ARP protocol provides a \
method of routing |P messages Adg::rsds“lf_a;sgth Addzz?figth Dperalien Cods
O_n a LA N * It pI‘OVI des a [Hardware Address of Sending Station
discovery method to link a | (Octets 0-3)
station Ethernet MAC addressto [P Address of Sending Station IP Address of Target Station
. (Octets 4 - 5) (Octets 0- 1)
its |P address. >
IP Address of Sending Station IP Address of Target Station
(Octets 2 - 3) (Octets 0- 1)
When a aatl on needs tO dl scover [Hardware Address of Sending Station
the Ethernet address of aremote | (Octere0-3)
gatl on |t Wl I I transrnlt a Hardware Address of Sending Station
1 (Octets 0 - 3)

broadcast message that contains

Getting Started: Building Applications with RL-ARM 67

the IP address of the remote station. The broadcast message also contains the
local station’s Ethernet address and its |P address. All the other nodes on the
network will receive the ARP broadcast message and can cache the sending
node’ s | P and station address for future use. All of the receiving stations will
examine the destination |P address in the ARP datagram and the station with the
matching I P address will reply back with a second ARP datagram containing its
I P address and Ethernet station address.

Thisinformation is cached by the sending node (and possibly all the other nodes
on the network). Now, when a node on the LAN wishes to communicate to the
discovered station, it knows which Ethernet station address to use to route the IP
packet to the correct node. If the destination node is not on the local network, the
IP datagram will be sent to the default network gateway address where it will be
routed through the wide area network.

Subnet Mask

A local area network is a defined subnet of a network. Often it uses a specific IP
address range that is defined for use as a private network (for example
192.168.0.xxx). The subnet mask defines the portion of the address used to
select stations within the local network.

The subnet mask is used to Address 192 - 168 = 0 . 100
define the station address range |
for the local area network.

vl

11000000 » 10101000 « 00000000 » 00110100

The subnet mask defines the

network address bits that form L 255 . 255 - 255 .« 955
the identity of the local network. . /
The remaining P address bits 11111111+ 11111111 = 11111111 + 00000000

can be used to assign the address \ /
of nodes on the local network. Address Range
By using the subnet mask to e iy
determine the identity of the

local network, any |P datagrams not destined for the local network are forwarded
through the network gateway and then routed through the wider internet. Within
aLAN, each network station must have the same subnet mask and a unique IP
address. These settings may be configured manually on each station. Itis
possible to configure the subnet and | P address automatically using a dedicated
protocol.

68

Chapter 4. RL-TCPnet Introduction

Dynamic Host Control Protocol DHCP

The DHCP supports automatic allocation of |P addresses and configuration of the
subnet mask withinaLAN. A DHCP server must be present within the LAN.
This can run on any station and listens on port 67. When anew station is added
to the network, it will request its network configuration from the DHCP server
before it becomes an active station within the network. The DHCP request
process consists of four stages: discovery, offer, request, and acknowledgement.

An Ethernet station can be assigned automatically an IP -~ ., DHCP
address by a DHCP server. This process consists of four SERVER
stages, discovery, offer, request, and acknowledge.

Sco Very,

To discover the DHCP server, the new station sends a \
UDP broadcast packet with address 255.255.255.255. /
When the DHCP receives the DHCP discovery packet, it

will reply back to the new station using the Ethernet %‘
MAC address contained within the discovery broadcast.

In this packet, the DHCP server offers the new station an —
IP address. To accept this I P address the new station
replies back with a second broadcast packet. The DHCP
server will send afinal acknowledgment packet that
contains the remaining network configuration
information and the lease duration of the IP address.

ACKNOWLEDGE

Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is mainly used to report errors
such as an unreachable destination or an unavailable service within a TCP/IP
network. ICMP isthe protocol used by the PING function that is used to check if
anode exists on anetwork. The Internet Control Message Protocol must be
implemented in a TCP/IP stack. However, in most embedded stacks only the
PING Echo reply isimplemented.

Getting Started: Building Applications with RL-ARM

Transmission Control Protocol

The Transrnl SS' on ContrOI Source Port Destination Port
Protocol is designed to ride
within the | P datagram data aletlsied
payl Oad_ Acknowledgement Number

Data AQARPIRESHF)
The I P packet provides the Offset | eseme? EIE v M M M SO
transport meChanlsrn across Checksum Urgent Pointar
various networks. The TCP
datagram provides the logical Sions e
connection between computers TCP Data
and the application software.
The TCP can be described as
making alogical circuit between
two applications running on Layer2 Header IP Header FCS
different computers. The

Internet Protocol uses the address of the destination computer. TCP usesa
source and a destination port, and provides error-checking, fragmentation of large
messages, and acknowledgement to the sender. The TCP acknowledgement and
retransmission mechanism uses a “diding window” method. These callsfor
multiple buffers to hold data that may need to be re-transmitted. It is expensive
in both processing power and user RAM, so it is quite a challenge when
implementing a small TCP/IP stack.

The TCP protocol istransported by the I P protocol
and provides the connection to an application on a
remote station. It supports fragmentation of data
packets, acknowledgement, and resending of lost
error packets. 21

Port Number Protocal

FTP Data

FTP Control

Telnet

target application software. The standard TCP/IP
application protocols have “well-known ports’ so that =
remote clients may easily connect to a standard
service. The device providing the service can open a
TCP port and listen on this port until aremote client
connects. The client isthen assigned a port on which
to receive data from the server. This port is known as
an ephemeral port asits assignment only lasts for the duration of the
communication session between the server and client.

SMTP

80 HTTP

110 POP3

The TCP port number associates the TCP data with 23]

e

70

Chapter 4. RL-TCPnet Introduction

User Datagram Protocol

Like the Transmission Control Protocol, the User Datagram Protocol rides within
the data packet of the Internet Protocol. Unlike TCP, UDP provides no
acknowledgement and no flow control mechanisms. UDP can be defined as a
best effort, connectionless protocol and is intended to provide a means of
transferring data between application processes with minimal overhead. It
provides no extrareliability over the Internet Protocol.

Like the Transmission Control Protocol, the User)
Datagram Protocol is transported by the Internet Source Port | Desfination Port
Protocol. Unlike TCP, UDPisasimple, low — Eheckaum
overhead protocol that provides an easy method of [

communication to aremote application. [——

Although delivery of data cannot be guaranteed

with UDP, its simplicity and ease of use make it the basis of many important
application protocols such as Domain Name Server (DNS) resolving and Trivial
File Transfer Protocol (TFTP).

Sockets

A socket is the combination of an |P address and a port number. In RL-TCPnet,
support is provided for the most useful TCP/IP-based applications such as web
server, using the Hypertext Transfer Protocol (HTTP) and e-mail, whichis
implemented with the Simple Mail Transfer Protocol (SMTP). This means that
you do not need to control individual connections. However, if you do wish to
generate your own custom TCP or UDP frames, alow-level socketslibrary is
also provided. If you intend designing your own protocol you will need to decide
between UDP or TCP frames. UDP isalightweight protocol that allows you to
send single frames. It does not provide any kind of acknowledgement from the
remote station. If you want to implement a simple control protocol that will
manage its own send and receive packets then use UDP. TCPisamore
complicated protocol that provides alogical connection between stations. This
includes acknowledgement and retransmission of messages, fragmentation of
data over multiple packets and ordering of received packets. If you need to send
large amounts of data between stations or need guaranteed delivery then use
TCP.

Getting Started: Building Applications with RL-ARM

71

First Project - ICMP PING

In order to understand how RL-TCPnet works, we will make a simple example
that connects a microcontroller to aLAN. We can then check that it isworking
by using the Internet Control Message Protocol (ICMP) to PING the board.

The PING project consists
of the startup code and a
module main.c to hold our
source code. We must then
add the RL-TCPnet library.
Next, add the configuration
file Net_config.c and the
low-level Ethernet driver

Application

NET_Config.C

TCP_ARM_L.lib

Ethernet Driver

EMAC.c. RL-TCPnet comeswith fully configured
Ethernet drivers for awide range of ARM processor-based microcontrollers.

=53 Ping

E-£5 Source Code
mair.c
EB Configuration Code
CoEe Met_Config.c

EE Library
o TCP_ARM_L lib
=5 Driver

The configuration file can be found in c:\KEILARM\RL\TCPNET\SRC. The Ethernet
drivers for supported devices are located in C:\KEIL\ARM\RL\TCPNET\DRIVERS.

Thenet_config.c isatemplate file that allows us to quickly and easily enable the
RL-TCPnet features that we want to use. For this project, we need to define the
basic network parameters. We can enter afixed |P address, subnet mask,
network gateway, and DNS serversin the same way that we would configure a

PC for aLAN.

The RL-TCPnet also supports DHCP. |If DHCP is enabled, the microcontroller
retrievesits | P, subnet, gateway and DNS addresses from a DHCP server on the

loca network.

Whether we use fixed |P addresses or retrieve them from the DHCP server, we
must provide an Ethernet Media Access Controller (MAC) address. Thisisthe
station address for the Ethernet network and it must be unique. During
development, you can use a*“made up humber”, but when you produce areal
product, it must contain aunique MAC address. Thisisdiscussed in more detail

at the end of this chapter.

Chapter 4. RL-TCPnet Introduction

= Ethernet Metwark Inkerface rd =) Ethernet Network Interface [v
-- MAC Address |_=_| MaC Address
E| IP address Address byte 1 0x1E
.. dddress byke 1 192 Address byte 2 030
.. hiddress byte 2 168 Address byte 3 062
- hddress byte 3 1 Address byte 4 0xaz
.. Address byte 4 49 Address byte 5 045
[=)- Subnet mask Address byte 6 0x5E
- Mask byte 1 255 - IP Address
. Mask byte 2 255 - Subnet mask.
.. Mask byte 3 255 - Default Gateway
.. Mask byte 4 0 [#- Primary DS Server
=] Default Gateway - Secondary DNS Server
.. hddress byte 1 132 [ARP Definitions
- Address byte 2 165 B IGMP Group Management -
.. dddress byte 3 1 - MetBIOS Mame Service [V
.. hddress byte 4 254 ... Dynamic Host Configuration I
[=1- Prirnary DN5 Server
.. dddress byke 1 194
.. Address byte 2 25
.. hddress byte 3 2
.. dddress byte 4 129
.. Address byke 1 194
.. hddress byte 2 25
.. dddress byte 3 2
.. dddress byte 4 130

RL-TCPnet also supports the NetBIOS Frames Protocol. If thisis enabled, we
can provide our node with a NetBIOS local host name as well as an |P address.

Finally, we must enable the TCP and UDP protocols. The ICMP just uses UDP,
but as we will be using other application protocols that do use TCP, we will
enable both here.

= UDP Sockets Iv [=)- Zystem Definitions
. Mumber of UDP Sockets 3 Local Host Mame tepriek
-Highest port far autoselect 1023 Memory Poal size 819z
|- TCP Sockets 4 Tick Timer interval 100 ms
. Mumber of TCP Sackets 7

-Highest port for autoselect 1023
- TCP Mumber of Retries 5

- TCP Retry Timeaut in seconds 4

L TCP Default Connect Timeout in seconds 120

Getting Started: Building Applications with RL-ARM 73

Once the RL-TCPnet library has been configured, we need to add the following
code to our application code.

void timer poll () {

if (100mstimeout) {
timer tick () ; // RL-TCPnet function
tick = TRUE;

int main (void) {

timer init () ;

init TecpNet () ;

while (1) {
timer poll ();
main TcpNet () ;

}

The main while loop must be a non-blocking loop that makes a call to the RL-
TCPnet library on each pass. In addition, we must provide atimer tick to the RL-
TCPnet library. This must use a hardware timer to provide a periodic timeout
tick. Thetick period should be around 100ms. If you need a different tick rate,
you should reconfigure the timer and change the timer tick interval in
Net_Config.c.

Once configured, the project can s ctem efinitions
be built and downloaded intothe |
microcontroller so that we can
testitonarea LAN.

- Local Host Mame MyMode

.- Memory Pool size a19z

Tick Timer interval 100 ms

Exercise: PING Project

This project demonstrates how to configure the RL-TCPnet library to create a
minimal TCP/IP station.

74

Chapter 4. RL-TCPnet Introduction

Debug Support

There are two available versions
of the RL-TCPnet: arelease
version and a debug version.
The debug version uses the
printf() function to output
network debug messages, which

can be used during development.

By default, the printf() function
uses adebug UART asa

standard I/O channel by calling
the low level driver sendchar ().

=54 Fing
B3 Source Code
[t main.c
B3 Configuration Code
] Met_Config.c

H Startup.s
-5 Lbrary
o [F] TCPD_ARM_L.ib
-3 Driver

Lo [#] EMAC.C

Met_Debug.c ——p

[=- TCPnet Debug Definitions I
- Memary Management Debug Errors only
- Ethernet Debug Errors only
- PPP Debug Off
-~ 5LIP Debug OFf
- BRP Debug Errors only
- IP Debug Errors only
- ICMP Debug Errors only
- IGMP Debug

UDP Debug
- TCP Debug

MENS Debug
- DHCP Debug

DS Debug
- Application Debug

Errars only
Errars only
Errars only
Errars only
Errars only
Errars only
Errars only

To use the debug version of the library, you must ensure that the UART is
configured and suitable sendchar() codeis provided. It isalso important to
remember that the sendchar () routine is typically configured to operatein a
polled mode. Thiswill provide a significant overhead to the operation of the RL-
TCPnet library. A heavily loaded LAN will generate many debug messages that
may in turn cause the RL-TCPnet library to fail.

Exercise: PING with Debug

This example presents the PING project with the RL-TCPnet debug features

enabled.

Using RL-TCPnet with RTX

Although RL-TCPnet can be used as a standalone C

library, it is also possible to use it with RTX.

When RTX is started, call theinit_TCPnet()

function, then create

atask for the TCP Application

timer tick. Then we :
Net Confi RTX_Conf

need to create a e o] — e

second task to call RTX_ARM_L.lib

the RL-TCPnet TCP_ARM_L.lib

Iibrary. Ethernet Driver

=53 Ping RTX
=55 Source Files

E-£5 Configuration Files
----- Met_Config.c

..... LPC2300_RTH.5
E-£5 Library
..... TCP_ARM_L.lib

----- LPCZ3_EMAC.C
-7 Documentation

Getting Started: Building Applications with RL-ARM 75

void init (void) _ task {
init TcpNet () ;
os_tsk create (timer task, 30);
os_tsk create user (tcp task, 0, &tcp stack, sizeof (tcp stack));
os_tsk delete self ();

}

Since the TCP task has a greater memory requirement than most user tasks, it
must be defined with a custom stack space. Thetcp_stack is defined as shown
below:

U64 tcp_stack [800/8];

Thetimer tick is controlled in its own task. Thistask isgiven ahigh priority and
isset to run at intervals of 100msec.

__task void timer task (void) ({
os_itv_set (10);
while (1)
timer tick () ;
os itv wait ();
}
}

The main tcp_task calls the RL-TCPnet library and then passes execution to any
other task that isin the READY state. Since thistask has no RTX system calls
that will block its execution, it is always ready to run. By making it the lowest
priority task in your application, it will enter the RUN state whenever the CPU is
idle.

__task void tcp_task (void) {
while (1) {
main TcpNet () ;
os_tsk pass ();
}
}

Exercise: PING With RTX

This exercise demonstrates the PING project built using RTX.

76

Chapter 4. RL-TCPnet Introduction

RL-TCPnet Applications

RL-TCPnet supports a number of standard internet applications. These include
trivia filetransfer (TFTP), web server (HTTP), email client (SMTP), telnet, and
domain name server (DNS) client. In RL-TCPnet, each of these applicationsis
quick and easy to configure, as we shall seein the next section.

Trivial File Transfer

RL-TCPnet includes code to implement a TFTP server. Asits name suggests,
TFTPisasimple protocol that was developed originaly to transfer program
images into remote devices such asinternet routers and disklessterminals. In
comparison, FTPisintended to transfer large files across the internet. The TFTP
protocol is much more suitable for a small, embedded system. Compared to FTP,
it also uses avery small amount of resources.

Adding the TFTP Service

Of dll the applications supported =i W DR
=25 Source Files +- Ethernet Metwork Interface
by RL'TCPnet, the Tl_—I-P server - main.c .Ppp Metwark Interface

onfiguration Files - SLIP Metwork Interface
TRTP_ufc —— o | op Sackets
t_Config.c TCP Sackets
-HTTP Serwer
- Telnet Server
- TFTP Server
.- Number of TFTP Sessions

isthe ssimplest to configure. The
TFTP server is designed to
integrate with the RL-Flash file

system. It works with any media T e ALt
type aval I abl e to RL - FI ash F3_ARM_L.lib FTP Inactive Session Timeout in seconds

[543 Driver FTP Mumber of Retries

(SRAM, FIaSh, seria Flash or ;héfsfsp[Erivar e -DNS Client

SD/MMC). You must configure - B S

RL-Flash as described in Chapter 3. In this section we

will look at configuring the TFTP server to work with Application
an SD/MMC-based file system. We will take the
SD/MM C-based file system developed in Chapter 3 TFTP_UIF.C

and add the RL-TCPnet files as shown below. TCP_ARM _L.lib

]| File_Config.c
;] Retarget.c
1] Startup.s

O0* & “"AOO°0070

The TFTP support is enabled in the Net_config.c file. Ethernet Driver
Oncethe TFTP server is enabled, you can adjust its
parameters to meet your reguirements.

Getting Started: Building Applications with RL-ARM 77

Thisincludes:

= the number of TFTP clientsthat can be connected simultaneously,
= theinactivity timeout for each client,

= the number of retries supported.

TFTP uses UDP rather than TCP asits transport protocol. The use of UDP gives
asignificant saving in both code size and SRAM footprint.

Complete the TFTP server by adding a user interface file, TFTP_uif.c, located in
C:\KEIL\ARM\RL\TCPNET\SRC. Thisfile provides the TFTP callback functions that
link the server to the file system. We do not need to modify thisfile to make the
basic TFTP server work. To add special featuresto the TFTP server, modify
these callback functions.

Exercises TFTP Server

This exercise buildsa TFTP server that can be used to upload and download files
to the RL-Flash file system.

HTTP Server

One key TCP/IP applications B e PRI v
Supported by the RL_TCPnet E! - Enable User Authentication Ird
library isaHTTP web server. The

web server can be used to deliver

Authentication Realm string Embedded WEE Server
+ Authentication Username admin
i Authentication Password

EI-4£ Driver

sophisticated HTML pages to any

suitable web browser running on e

any platform, beit aPC, Mac, e

smart-phone, or other internet - [bei_logo.

enabled device. The HTTP server has a Common

Gateway Interface (CGI) that aIIow_s us to input and Application
output data to the embedded C application. EB € LML Conle T
To configure the web server, take the first PING Net Config
project and enable the web server option in Net_config.c. RL-TCPNET
Inthe HTTP server section, define the number of web -
browsers that can connect simultaneously to the server. Ethemet Driver

It isalso possible to create an access username and
password.

78

Chapter 4. RL-TCPnet Introduction

Web Server Content

The content held in the web server can be any file type that can be displayed by a
web browser. Thiswill be hypertext markup language (HTML), which may also
contain images held in any common format such as PNG, GIF, and JPEG, sound
in WAV or MP3 formats, and active content such as Java script libraries. You
are limited only by the amount of storage space available to your microcontroller.
Since this will be quite small compared to a full-scale web server, you should be
careful about which tool you use to generate the HTML script. Tools such as
Dreamweaver or FrontPage are likely to generate complex scripts that will be too
large to store on asmall microcontroller. If you are not familiar with HTML,
there are many free tutorials available on the internet. Y ou will also need a
simple HTML editor so that you can design minimal HTML pages. Some
suitable resources are listed in the bibliography section at the end of this book.

Adding Web Pages

Once RL-TCPnet is configured and running on the network, we can start to add
some content to the web server. Generally, this takes the form of HTML pages.
Y ou may start withasimple HTML script like the one below.

<html>
<head>

<title> HTML Example </title>
</head>

<body>
<embed src="sound.wav" autostart="true" hidden="true">
<p>First Emdedded Web Server</p>
<p>
<embed src="sound.wav" autostart="true" hidden="true"></p>
</body>
</html>

RL-TCPnet alowsyou to store the HTML pagesin two different ways. You can
convert the HTML into C arrays, which are then stored as part of the application
code in the microcontroller program Flash. Thisisideal if you want avery small
web server that runs on a single chip microcontroller. The second method stores
the HTML asfilesin the RL-Flash file system. This method has the advantage
that you can upload new HTML web pages using the TFTP server, but it al'so has
alarger code-size footprint.

Getting Started: Building Applications with RL-ARM 79

Adding HTML as C Code

In order to place HTML pagesin & i
our embedded web server, you e
must add each of thefiles B :odlx.r:vn:v I\u\;eh\kei_ ogo.qif Carcel |
(HTML file, GIF fileetc) tothe =" =

project. Each of these files Tl

should be added as atext file T [Pt

type. Thesefiles haveto be S —

processed into avirtual file system in order to get them into the web server. This
is done by a special utility provided with the MDK-ARM, caled Fcarm.EXE (file
converter for ARM). The FcarRM.EXE Uutility islocated in the c:\KEIL\ARM\BIN
directory.

The utility FcARM.EXE iS used to

k . HTTP Content
convert files with web server
content into C arrays held within HTML kg e
aprogram module.
The creation of the virtual file
system can be integrated with the S
project build system by adding Flle Comverer

an input file to the project as
shown below. Theinput fileisa _l_
text file containing the command

line parameters to be used when Virtual Fil Syster

launching the FcARM.EXE utility. WEB.C
-

Thisinput file, web.inp, should be added as a custom file type. Initslocal options
menu you can specify how the file should be treated when the project is built.

In this case, when the project is
built, the FCARM utility will be
run and it will use the contents of
the web.inp file asits parameters.
The web.inp file should list the
input web content and a Custam Arguments: IE:\KeiI‘\.&HM\bin\fcarm @ty ebiWeb.inp

destination C file.

| Cptions For File 'web.inp'

index. kil

index.html, sound.wav, hitex logo.gif to Web.c nopr root Web

80

Chapter 4. RL-TCPnet Introduction

When the project is built, the three web-content files are parsed and their contents
are stored as C arraysin thefile wes.c.

const U8 index html [] = ({

"<html> <head> <title>HTML Example</title></head>\r\n"

"<body>\r\n"

"<embed src=\"sound.wav\" autostart=\"true\" hidden=\"true\">\r\n"
"<p>First Emdedded Web Server</p>\r\n"

"<p>\r\n"

"<embed src=\"sound.wav\" autostart=\"true\" hidden=\"true\"></p>\r\n"
"</body>\r\n"

"</html>\r\n"

E

When aweb browser connects to the server and requests an HTML page, a
simple “file system” is used to locate the correct array. The contents of the array
are then returned to the browser, which in turn displays the contents to the user.

const struct http file FileTab [FILECNT] =
{"index.html", (U8 *) &index html, 255},
{"sound.wav", (U8 *) &sound wav, 8903},
{"keil logo.gif", (U8 *) &keil logo gif, 4637},

-

{

To make an active web server, you smply add the web.c file to your project and
rebuild the project. This approach embeds the web server content as part of your
application. Asit does not use afull file system, you can build avery small web
server application that will fit within the Flash memory of a small
microcontroller. However, once the application is built, it is not possible to
update the content of the HTML pages. If you need to change the HTML content
of adeployed web server, it is possible to store the HTML pages within the RL-
Flash file system. They then can be updated locally or remotely viathe TFTP
server.

Exercise: First Web Server

This exercise configures a minimal Web Server with a single page of HTML.

Getting Started: Building Applications with RL-ARM

Adding HTML with RL-Flash

The RL-TCPnet web Application

server can be configured HTTP_UIF.C | TFTP_UIFC
to serve We_b pages stored NET_CONFIG.C | FILE_CONFIG.C
InaFlaStheWStem TCP_ARM_L.lib FS_ARM_L.lib
implemented with RL- — —
Flash. This makesit Ethernet Driver MCI/SPI Driver

possible for usersto upload HTML pages into thefile
system using the TFTP server and then serving them to
aweb browser. We can configure the web server to
work thisway by taking the TFTP example from the
last section and enabling the HTTP and TCP support.

We have now covered the basic techniques for building
an embedded web server using RL-ARM. Thisalows
us to serve static web pages to remote clients. Most
embedded web servers host dynamic web pages that
provide information relative to the system where they
are hosted. Therefore, a means to pass data to/from the web server and the C
application code running in the microcontroller isrequired. Inthe RL-TCPnet
library, thisis done through a Common Gateway Interface (CGlI).

=23 HTTP File
El E Source Files

[main.c

EI a Configuration Files

- [#] Met_Config.c

- [#] File_Corfig.c

- [%] Retarget.c

o [#] Startup.s
[E&5 Library

- [F] TCP_ARM_Llib
- [£] Fs_arM_Llb
155 Driver

- [#] EMAC.c

- [£] MCIor 5P1 Driver c
E-E5 TCPinketface files

b [#] TFTR _uif.c

o [] HTTP_uif £

E-E3 HTML

] index.htrl

] web.inp

o] CGlinput. cgi

Exercise: File based web server

This exercise configures the web server to storeits HTML content within an SD
card using the RL-Flash file system. The TFTP server is enabled also so that

new pages can be uploaded remotely.

82

Chapter 4. RL-TCPnet Introduction

The Common Gateway Interface

The Common Gateway Interface (CGl) is a standard protocol for interfacing
application software to a TCP/IP server, typically aHTTP server. The CGlI
protocol will take data from the TCP/IP server that has been entered from a client
and passit to the application software in the form of an environment variable.
The CGI protocol aso allows the application software to output data through the
TCP/IP server. Inthe case of aHTTP server, the dataiis output as dynamically
modified HTML.

To enable the CGlI interface, we need to add a new C file from the RL-TCPnet
library to our project. Thisfileiscalled HTTP_ccl.c and is stored in the TCPnet
source directory C:\KEIL\ARM\RL\TCPNET\SRC. |n addition, any HTML file that will

access the CGlI interface must ;

have the extension .cgi rather T 5—5”':;“_:
than htm or htm! as shown below. ¥ %] WEB.C

2] HTTP_CGLe——»
Thefile TP coic linksevents (= &3 E‘leh oo
in the web server to the) index.co
application C code viaa CGl.

Dynamic HTML

We have aready discussed how to display static HTML pages. However, most
embedded web servers need to display the data held in the C application.

With the RL-TCPnet, thisis done with asimple CGI scripting language that is
added to the HTML text. The CGI scripting language contains four basic
commands. These must be placed at the beginning of each HTML line within a
page that uses the CGI gateway. The commands are as follows:

Command Description

| Include a HTML file and output it to the browser.

T The characters following this command are a line of HTML and should be output
to the browser.
C This line of text is a command line and the CGl interface will be invoked.

A period (.) must be placed at the end of a CGl file.
A hash (#) character must be placed before a comment.

Getting Started: Building Applications with RL-ARM 83

An HTML filethat isintended to output a dynamically changing greeting
message to the web browser would look like this:

t <HTML><HEAD><TITLE> Hello World Example </TITLE></HEAD>

t <H2 ALIGN=CENTER> Output a Greeting as Dynamic HTML </H2>
c a <p> %s </p>

t </BODY>

t </HTML>

The period marks the end of the file

Thefirst two lines begin with the “t” script command. This means that the
remainder of the lineisHTML and will be sent to the client browser. The third
line beginswith the “c” script command. This meansit isacommand line. The
remainder of the line will be passed in an environment variable to the common
gateway interface function cgi_func(). The environment variableis called env
and from the example above it will contain the string “a <p>%s</p>". The
start of this string consists of user defined control characters, in this case the“a’.
The cgi_func() must contain code to parse these characters and then format the
remainder of the HTML line.

Ulé cgi_func (U8 *env, U8 *buf, Ul6é buflen, U32 *pcgi) {
switch (env [0]) ({
case 'a':
len = sprintf ((S8 *) buf, (const S8 *) &env [2], "Hello World");
break;

}

return ((Ul6) len);

}

In the case above when the page is loaded, the “a” clause of the switch statement
will be executed. The sprint() statement then becomes

len = sprintf ((S8 *) buf, <p>%s</p> , "Hello World") ;
and the contents of buf becomes:

<p> Hello World </p>
which isthen output to the browser.

To the browser the HTML code will appear as shown below.

<HTML><HEAD><TITLE>Hello World</TITLE></HEAD>

<BODY >

<H2 ALIGN=CENTER>Output a Greeting as Dynamic HTML</H2>
<p> Hello World </p>

</BODY>

84

Chapter 4. RL-TCPnet Introduction

Thistechniqueis very straightforward and easy to use. Y ou can apply the CGlI
scripting to any part of the HTML text, in order to generate dynamically any
form of HTML display. Inthe above example, we have only used one user
defined control character. It is possible to use multiple control characters to build
up complex dynamic pages.

Exercise: CGI Scripting

This exercise demonstrates the basic scripting method used to generate dynamic
HTML.

Data Input Using Web Forms

Now we will have alook at how to send data from the web browser to the C
application. There are two data input methods supported by the CGI module.
These two methods are called GET and POST. Both are used to input data
through aform.

The GET method should be used if the input dataisidempotent. This means that
the input data has no observable effect on the world. For example, entering a
query into a search engine does not change any data held on the web.

The POST method should be used if the input datais going to be used to change
values“in thereal world”. For example, if you are entering data into a database
you are changing the state of that database and should therefore use the POST
method. For our purpose of entering datainto asmall, embedded web server, we
will be using the POST method.

For our purposes, the GET method should be used to change environment
variables within the web server, while the POST method should be used to
transfer data between the user and the C application code.

Using the POST Method

To allow aremote user to enter data via aweb browser, we need to add aform
cell and a submit button to our web page. The basic code for thisis shown
below.

Getting Started: Building Applications with RL-ARM

85

<HTML>
<HEAD>
<TITLE>Post example</TITLE>
</HEAD>
<BODY >
<FORM ACTION="index.cgi" METHOD="POST" NAME="CGI">
<TABLE>
<TR>
<TD>
<INPUT TYPE="TEXT" ID="textboxl" SIZE="16" VALUE=""></TD>
<TD ALIGN="right"s>
<INPUT TYPE="SUBMIT" ID="change" VALUE:"change"></TD>
</TR>
</TABLE>
</FORM>
</BODY>
</HTML>

When this page is viewed, it creates a cell

“textbox1” and a submit-button “change’ that
invokes the POST method. Pressing the button will post the data of “textbox1”
to the CGl interface. This causes RL-TCPnet to call the CGI_process_data()
function in the HTTP_cCGI.c file

void cgi process data (U8 *dat, Ul6 len) ({
unsigned char textl [16];

var = (U8 *) alloc _mem (40);
do
dat = http get var (dat, var, 40);
if (var [0] != 0) {
if (str scomp (var, "textboxl") == _ TRUE)
str copy (textl, var+4); // extract user data
process Input (textl); // user function to process data

}
}
}
}

Thetwo functions CGIl_process _data() and CGI_process var() are used to
handle the GET and POST methods for sending datato aweb server. We must
customize the CGI_process _data() function in order to take data from the
textbox1 cell.

When the SUBMIT button is pressed, RL-TCPnet calls CGI_process_data(). In
this function, a buffer called var isallocated. The process datais then copied
into this buffer as a string, by calling the http_get_var() function. This string
contains the name of the form cell and any data that has been entered. The form
of this string is shown below.

textboxl=<input text>

86

Chapter 4. RL-TCPnet Introduction

Now, all we need to do isto add code to parse this string and pass any entered
datato our C application.

Exercise: CGl POST Method

This exercise used the CGI POST method to pass input data from a text box to
the underlying C application.

The basic POST method allows you to input datafrom any HTML form.
However, when the form is rel oaded, the default options will be displayed. |If
you have a configuration page that uses objects such as radio buttons and check
boxes, it is desirable to display the current configuration. To do this, we need to
employ both the CGI dynamic HTML and the CGI POST method. When the
page loads or is refreshed, the CGI_func() must output the current settings. |If
new values are entered, they will be accepted by the CGI_process_data()
function. For asimpletext box, the HTML must be modified as follows:

#

HTML with script commands

#

t <HTML>

t <HEAD>

t <TITLE>Post example</TITLE>

t </HEAD>

t <BODY>

t <FORM ACTION="index.cgi" METHOD="POST" NAME="CGI">

t <TABLE>

t <TR>

t <TD>

c a <INPUT TYPE="TEXT" ID="textboxl" SIZE="16" VALUE="%"></TD>
t <TD ALIGN="right">

t <INPUT TYPE="SUBMIT" ID="change" VALUE:"change"></TD>
t </TR>

t </TABLE>

t </FORM>

t </BODY>

t </HTML>

The CGI_func() must output the current value held in the text box cell when the
pageisloaded.

// From cgi func() in HTTP CGI.c

case 'a':
len = sprintf ((S8 *) buf, (const S8 *) &env [4], textl);
break;

Getting Started: Building Applications with RL-ARM 87

In this case, the data held in the application_data variable will be converted to an
ASCII string. When the HTML pageisloaded, the string will appear asthe
content of the text box. This same approach can be applied to any other HTML
object such as radio buttons, check boxes, and pick lists.

Using the GET Method

The GET method works on the same principle as the POST method. When a
form is defined in the HTML script, we use the GET method in place of the
POST method as shown below.

<FORM ACTION="network.cgi" METHOD="GET" NAME="CGI">

Now when the form is submitted, the CGI_process var() function will be
triggered in place of the POST method’s CGI_process_data() function. The
contents of the input cell are passed to the CGI_process var() function and can
be handled in the same manner as the CGI_process_data() function.

void cgi process var (U8 *gs) ({

U8 *var;
var = (U8 *) alloc mem (40);
do
gs = http get var (gs, var, 40);
if (var [0] != 0) {
if (str_scomp (var, "query=") == _ TRUE) {

form query string (var+6);

while (gs);
free mem ((OS_FRAME *) var) ;
}
}

Exercise: Web Server Forms

This exercise demonstrates the code needed for each of the basic web form
objectsincluding text box, radio button, check box and selection list.

88

Chapter 4. RL-TCPnet Introduction

Using JavaScript

JavaScript isa C like scripting language stored on aweb
server and downloaded on demand to a client browser.
The client interprets and executes the script on its host
processor, be thisa PC, MAC, or smartphone. JavaScript
allows you to devel op sophisticated multi-platform user
interfaces. In this section, we will look at adding a
JavaScript library that draws agraph. First, we need a
suitable JavaScript application. A graph drawing
application can be downloaded from
www.codeproject.com/jscript/dhtml_graph.asp. This
object consists of two files, a JavaScript sourcefile, and a
gif. Add them to aweb server application. Theweb.inp
file content is:

index.htm, graph.htm, dot.gif, graph.js to Web.c

nopr

=- ﬁ Jawascript Graph
I |27 Source code
-7 Configuration

~[3 Cwiver

a HTML caonkent
weh.inp
indez. bl

WEE.C
dot. gif
.] graph.cai
------ .] Graph.js
- |’_“| Dacumnentation

-

root Web

The three graph files (graph.htm, dot.gif, and graph.js) are also added to the web.inp
command line. The HTML file graph.htm invokes the graph object.

<script language="JavaScript"s>

var bg = new Graph (10);

bg.parent = document.getElementById ('here');
bg.title = 'Annual average temperature by month';
bg.xCaption = 'Month';

bg.yCaption = 'Temperature'’;

bg.xValues [0] = [10, 'Jan'l];

bg.xValues = [15, 'Feb']l;

bg.xValues [2] = [17, 'March'];

bg.xValues [3] = [20, 'April'l;

bg.xValues [4] = [22, 'May'l;

bg.xValues [5] = [30, 'June'];

bg.xValues [6] = [33, 'July'];

bg.xValues [7] = [27, 'Aug'];

bg.xValues [8] = [20, 'Sept']l;

bg.xValues [9] = [18, 'Oct'];

bg.xValues [10] = [15, 'Nov'];

bg.xValues [11] = [9, 'Dec'];

bg.showLine = true;

bg.showBar = true;

bg.orientation = 'horizontal'; // or
bg.draw () ;

</script>

= 'vertical';

Getting Started: Building Applications with RL-ARM 89

When the html page is loaded,
the JavaScript library is sent to
the browser client. The HTML
code is used to create the graph
object and define the
coordinates.

Annual average temperature by month

Month

BTy

When the graph page is |oaded,
the JavaScript code will be
downloaded to the browser. The
browser will then execute the
JavaScript code and draw the graph. Thisresultsin a“static” graph where
always the same values are plotted. While thisis not very useful in an embedded
system, it isagood starting point to test the JavaScript source code, particularly
if you have not written it yourself. Once the JavaScript isrunning as a static
object, the RL-TCPnet scripting commands can be used to pass data from the
embedded application to the JavaScript graph. First, we must rename the
graph.htm file to graph.cgi then add the script commands as shown below.

cma bg.xValues [0] = [%s, 'Jan'l];
cmb bg.xValues = [%s, 'Feb'l;
cmc bg.xValues [2] = [%s, 'March'];
cmd bg.xValues = [%s, 'April'];
cme bg.xValues [4] = [%s, 'May'l;
cmf bg.xValues [5] = [%$s, 'June'];
cmg bg.xValues [6] = [%s, 'July'];
cmh bg.xValues [7] = [%s, 'Aug'l];
cmi bg.xValues [8] = [%s, 'Sept'];
cmj bg.xValues [9] = [%s, 'Oct'];
cmk bg.xValues [10] = [%s, 'Nov'];
cml bg.xValues [11] = [%s, 'Dec'];
//

// From HTTP CGI.c

//

unsigned char months [12] =
{10, 15, 17, 20, 22, 30, 33, 27, 20, 18, 15, 9};
Ulé cgi_ func (U8 *env, U8 *buf, Ulé buflen, U32 *pcgi) {

case 'm':
i = env [2] - 0x61;
sprintf (buffer, "%1d", months [i]);
len = sprintf ((S8 *) buf, (const S8 *) &env [4], buffer);
break;

90

Chapter 4. RL-TCPnet Introduction

Here we want to display temperature values held in a C array controlled by the
application code. We add a script command for each line of JavaScript that is
used to pass the graph coordinates. The fixed graph values are replaced by a %s
for the dynamic data. When the page isloaded, each script line will trigger the
cgi gateway function cgi_func(). A second user defined command is added for
each script line (ato). Each time the script command triggers, thecgi_func() is
called and we enter case’m': of the switch statement. The ASCII vaue of the
second user defined character isread from the env[] array and we deduct oxs1.
This converts from an ASCII character value to a binary value between 0 and 11.
Thisvaueis used as an index into the application data array (months[]). The
logged temperature data is then converted into an ASCII string. Finally, the
sprintf() command is used to replace the %sin the HTML code with the
application data value. Theresult isa graph that displays the dynamic data
logged by the application. Using this approach, you can see that web server
scripting commands in TCPnet allow you to pass dynamic application data to any
embedded object.

Exercise: JavaSscript

This exercise demonstrates adding a JavaScript Graph object to a CGI page.

AJAX Support

Using the RL-TCPnet scripting language to pass dynamic data to JavaScript
objects allows you to easily build sophisticated html pages that utilize the
thousands of man hours of development that has gone into many web browsers.
However, there are disadvantages if you are trying to display frequently changing
data. An easy solution isfor the user to press the browser’ s refresh button or you
can add arefresh tag to the <head> section of the HTML code.

<meta http-equiv = "refresh" content="600">

While thisworks, it is not very satisfactory for two reasons. First, this causes the
whole page to reload, what causes screen flicker and thusis not very satisfactory
for the user. Second, the browser has to download the whole page again, which
is dow and consumes bandwidth. The solution to this problem is to use a group
of interrelated web development techniques called “ Asynchronous JavaScript and
XML" or Ajax for short. For our purposes, Ajax is used to isolate the dynamic
datawithin agroup of XML tags. Thisdataisthen sent to the browser at an
update rate defined within the html page. This means that the dynamic
application datais sent in asingle TCP packet providing avery fast update rate

Getting Started: Building Applications with RL-ARM

91

that consumes minimal bandwidth. The most commonly used browsers can take

this data and update the web page without having to reload the full page. This
givesflicker free “real-time” update of dynamic objects within the web page.

To see how the Ajax support works within RL-
TCPnet, we will look at creating a CGI page that
contains eight tick boxes that reflect the state of a
series of buttons connected to port pins on the
user hardware. The necessary Ajax JavaScript
support is contained in a support file called
xml_http.js. Thisfile should be added to aweb
server project as shown above. Next, we must
create a CGl page, buttons.cgi, that displaysthe
eight check boxes. A separate XML file,
buttons.cgx, 1S also created that will hold the

Elrl Ajax

=425 HTTP Files

weh,inp
buttons, coi
o[buttans.cox
fo [wml_http.js
F-[27] Source Files

(7] Configuration Files

F-(77] Library

H-[~7 Documentation

dynamic data as XML tags.

<form action="buttons.cgi" method="post" id="forml" name="forml"s>

<input
<input
<input
<input
<input
<input
<input
<input
</td>

ot of ot of ot o of cf f of o of o

ct

A refresh button, atick box,
and eight status boxes are
created in aform that uses

type="checkbox"
type="checkbox"
type="checkbox"
type="checkbox"
type="checkbox"
type="checkbox"
type="checkbox"
type="checkbox"

</tr></table>
<p align="center"s>
<input type="button" id="refreshBtn" value="Refresh"

disabled
disabled
disabled
disabled
disabled
disabled
disabled
disabled

[7.

<table border="0" width="99%"><tr>
<td>Buttons
<td align="center">

.0] :</td>

id="button7">7
id="button6">6
id="button5">5
id="button4">4
id="button3">3
id="button2">2
id="buttonl">1
id="button0">0

onclick="updateMultiple (formUpdate) ">

onclick="periodicUpdate () "></p></form>

Periodic:<input type="checkbox" id="refreshChkBox"

Item

» Buttons [7..0]

7 F6

Refresh | Periodic

W5

-

Status

E4 E3E2EL BQ

the post method. The

refresh button will invoke a JavaScript function, updateMultiple(). Checking the
periodic tick box will call a separate JavaScript function, periodicUpdate().

92

Chapter 4. RL-TCPnet Introduction

function periodicObj (url, period) {
this.url = url;
this.period = (typeof period == "undefined") ? 0 : period;

t var formUpdate = new periodicObj ("buttons.cgx", 300) ;

function updateMultiple (formUpd, callBack, userName, userPassword) {
xmlHttp = GetXmlHttpObject () ;
if (xmlHttp == null)
alert ("XmlHttp not initialized!");

}

return O0;

}

When the refresh button is pressed, the JavaScript function updateMultiple() is
downloaded from the server and executed in the browser. Thisisastandard
function in the xmi_http.js support file. When thisfunction isinvoked, a
parameter called formUpdateis passed. Thisisan instance of a JavaScript object
called periodicObj that is also defined in xmi_http.js. This object passes the name
of the xml file that has to be downloaded, as well as the update period measured
in msec.

Q0 QaQQQaa-
5
N

</form>

Getting Started: Building Applications with RL-ARM

93

K e e e e e -

* cgi_ func() in HTTP_CGI.c

Yooocoooocoooocooococooccoococoocooocoooocooos */
case 'y':

len = sprintf (
(char*) buf,
"<checkbox><id><button%c</id> <on>%s</on></checkbox>",
env [1],
(get_button () & (l<<(env [1]-'0'))) ? "true" : "false"

<form>
<checkbox><id>button0O</id><on>true</on></checkbox>
<checkbox><idsbuttonl</id><on>false</on></checkbox>
<checkbox><ids>button2</id><on>false</on></checkbox>
<checkbox><ids>button3</id><on>false</on></checkbox>
<checkbox><id>button4</id><on>false</on></checkbox>
<checkbox><idsbutton5</id><on>false</on></checkbox>
<checkbox><ids>buttoné</id><on>false</on></checkbox>
<checkbox><ids>button7</id><on>false</on></checkbox>

</form>

This causes the browser to download the buttons.cgx file, which isasmall file
containing a script line for each element of the form. Each script line causes
cgi_func() to execute. The user defined command letters cause casey in the
switch statement to execute. This code then constructs the necessary XML to
update the browser tick-boxes and reflect the current status of the buttons on the
user hardware.

It isimportant to notethat there should be no space charactersin the
generated XML code.

#

#

#

t function periodicUpdate() {

t if (document.getElementById ("refreshChkBox").checked == true)

t updateMultiple (formUpdate) ;

t periodicFormTime = setTimeout ("periodicUpdate ()", formUpdate.period) ;
t } else {

t clearTimeout (periodicFormTime) ;

t
t

94

Chapter 4. RL-TCPnet Introduction

If the periodic update tick box is checked, it will invoke afunction called
periodicUpdate(). Thisisauser defined function located in the <head> section
of buttons.cgi. Thisfunction calls the updateMultiple() to display the current
status of the tick boxes. 1t will then set atimer within the browsers event
scheduling called periodicFormTime with the update period defined in the
formUpdate object. When thistimer expiresit will call again
periodicUpdate(),which will automatically refresh the status of the tick boxes
and restart the timer. If the user unchecks the tick box, the timer will be halted
with the clear Timeout() function. Remember, thisisall JavaScript code that
invokes functions within the client browser. Theresult is alow bandwidth
connection to the RL-TCPnet web server that provides “rea-time”, flicker-free
updates of dynamic application data.

Exercise: Ajax web form

This example demonstrates the minimum code necessary to update a web form
using Ajax support.

Simple Mail Transfer Client

The RL-TCPnet library includes an SMTP client, which allows your application
software to send email messages. Each email message can be afixed text string,
or it can be a dynamic message generated by the application software.

Adding SMTP Support

We can add SMTP support by 523 SR Clent

enabling the SMTP client in - i
Net_Config.c and adding the e
sMTP_uif.c support file to the

Startup.s
project.

[#- System Definitions

[+ Ethernet Metwork Interface
[H- PPP Metwiork Interface

- SLIP Metwark Interface

[#- UDP Sockets
[
[#
[
[
[#

H- TCP Sockets
|- HTTF Server
- Telnet Server
- TFTP Server
- DNS Client
ISR SMTP Client
.. Respanse Timeaut in seconds

ry
TCP_ARM_L.lib
-2 TCP Interface Files
: SMTP_uif.c
Drivers

Thefinal configuration step is to
define the address of the SMTP
server in your application code.
The SMTP server addressis held as aglobal array and is defined as follows:

BRIOOOOXXOTN

U8 srv ip [4] = {192, 168, 0, 253};

Getting Started: Building Applications with RL-ARM 95

Sending a Fixed Email Message

Once the server has been configured, the application starts the SMTP client by
calling the smtp_connect() function. This function connectsto an SMTP server,
sends asingle email, disconnects from the server, and finally calls a callback
function.

smtp connect ((U8 *) &srv_ip, 25, smtp cback) ;

Smtp_connect() requires three parameters. The first parameter isthe SMTP
server |P address. The second parameter is the port number on that the SMTP
server is running; the standard, well-known SMTP port is“25”. Finally, we pass
the name of the function that will be called when the SMTP session finishes.

The email message is composed by the smtp_connect() function by calling the
user-defined SMTP client interface function smtp_cbfunc() stored in the
sMTP_uif.c file:

Ulé smtp_cbfunc (U8 code, U8 *buf, Ulé buflen, Ulé6 *pvar xcnt)

During the SMTP session, thisfunction is called several times. Each timeitis
called, adifferent codeis passed. Thisisin order to request a different element
of the email message: sender’s email address, destination address, subject, and
finally the message. Each part of the message must be copied into the buffer,
which is passed as the second parameter. The third parameter passes the
maximum size of the message buffer. Thiswill vary depending on the
underlying maximum segment size of the TCP/IP network. A very simple
message can be sent as follows:

switch (code)

case 0: //senders email address
len = str copy (buf, "sender@isp.com") ;
break;

case 1: //recipient email address
len = str copy (buf, "receiver@isp.com) ;
break;

case 2: //subject line
len = str copy (buf, "Hello RL-TCPnet");
break;

case 3: //message
len = str copy (buf, "Email from RL-TCPnet.");
break;

96

Chapter 4. RL-TCPnet Introduction

The final message string must be terminated with a period (.). Once the message
has been, sent the SMTP session will end and the user-defined callback function
will be called. A session code will be passed to the callback function. This
reports whether the SMTP session was successful and if not, why it failed.

static void smtp cback (U8 code) {
switch (code) {
case SMTP_EVT SUCCESS:
printf ("Email successfully sent\n") ;
sent = _ TRUE;
break;
case SMTP_EVT TIMEOUT:
printf ("Mail Server timeout.\n") ;
break;
case SMTP_EVT ERROR:
printf ("Error sending email.\n") ;
break;
}
1

Exercise: Smple SMTP

This exercise presents the minimal code required to send a fixed email message.

Dynamic Message

It is possible to send dynamically created email messages. The sender and
recipient email addresses and the subject can be held as strings, so that different
addresses and subjects can be selected. The application software can also
dynamically generate the data sent in the message.

It is possible to send long email messages that contain application data. For each
call to the smtp_cbfunc() function, we can only send a packet of data with the
size of the buffer buf. However, we can force multiple calls to the smtp_cbfunc()
and build an email message that is larger than the buffer size.

typedef struct
Us id;
Ulée idx;

} MY BUF;

#define MYBUF (p) ((MY_BUF *) p)
First, we must declare a simple structure to control the construction of the email

data packets. In the structure above, the idx element counts the number of
packets sent, and id controls the flow of the smtp_cbfunc() switch statement.

Getting Started: Building Applications with RL-ARM

97

Next, expand the case 5 switch statement of the smtp_cbfunc() function, to
handle multiple data packets. Add another switch statement as shown in the code
below. Theloca buffer MYBUF(pvar)-->id counts how many data packets have
been sent, and MYBUF(pvar)-->id controls the flow of the code through the new
switch statement. The smtp_cbfunc returns the number of bytes that have been
written to the output buffer. Recurring cals to the smtp_cbfunc() function can be
enforced by setting the most significant bit of the return value to high.

Ulé smtp cbfunc (U8 code, U8 *buf, Ulé buflen, U32 *pvar) {
U32 len = 0;

switch (code)

case 5:
switch (MYBUF (pvar)->id) {
case 0:
len = str copy (buf, "First Packet of Datal\n");
MYBUF (pvar)->id = 1;
MYBUF (pvar)->idx = 1;
goto rep;

case 1:
len = str copy (buf,"Bulk of the data\n");
if (++MYBUF (pvar)->idx > 5) {
MYBUF (pvar) ->id = 2;

/* Request a repeated call, bit 15 is a repeat flag. */
rep: len |= 0x8000;
break;

case 2:
/* Last one, add a footer text to this email. */
len = str copy (buf,"Last Packet of data.\n");
break;
1
1

return ((Ul6) len);

}

Therefore, to send an email with alarge amount of datawe add a new switch
statement with cases. The first case sendsthe initial packet of data and sets the
repeat flag, the second case sends the bulk of the data and sets the repeat flag.
Thefinal case sendsthefinal packet of data and does not set the repeat flag.

Exercise: Dynamic SMTP

This exercise demonstrates how to construct a long email message containing
dynamic data.

98

Chapter 4. RL-TCPnet Introduction

Itisonly possible to send the first 127 ASCI| text characters as part of an email
message. If you plan to send binary datain an email message, it must be encoded
as atext string. The most common way of doing thisisto use base64 encoding.
The following example demonstrates an encoder and decoder utility.

Exercise: Base64 Encoding

This exercise demonstrates a base64 encoder, which can be used to prepare
binary data for inclusion in an email message.

Telnet Server

The RL-TCPnet library allows
you to add a Telnet server to
your application. Within the
Telnet server, you can provide a
custom menu system that links
directly to your application C
code. Thiscode existsinthe

B4 Telnet Server
Ea Source Files
-- main, &
-5 Configuration
P Starktup.s
Met_Config.c —»

E| Telnet Server

Mumber of Telnet Connections
E| Enable User Authentication

; Authentication Username

L e [#) TCP_ARM Ll
EIG TCP Interface files
- Telnet_uif.c
= Diriver

.. Authentication Password

I

admin

telnet support file. Once added,
the telnet server isfully functional, including buffering of the command history.
The Telnet server has avery small code footprint. This makesit ideal for designs
that need remote connectivity having very little Flash memory available. A PC
running a Telnet client can then access the Telnet server. This approach gives
similar functionality to aHTTP server, but with a much smaller code footprint.

Like the other RL-TCPnet applications, we need to enable the Telnet server in
the Net_config.c module. Once enabled, we can also define the number of parallel
connections and if necessary, add password protection. All of the custom code
for the Telnet server isheld in the user interface file Teinet_uif.c. Thisfile consists
of two functions; tnet_cgfunc() and tnet_process cmd().

Ulé tnet cbfunc (U8 code, U8 *buf, Ulé buflen)

The first function, tnet_cbfunc(), is used to manage the password logon to the
Telnet server. It also prints the logon banner and the prompt string that is printed
at the beginning of each linein the Telnet terminal. Y ou will not need to change
the code in this function, but you can change the strings to customize the

appearance of the Telnet server.

Ulé tnet_process_cmd (U8 *cmd, U8 *buf, Ulé buflen, Ul6 xcnt)

Getting Started: Building Applications with RL-ARM

99

The second function istelnet_process cmd(). This command line parser is used
to read the input from the Telnet client and then calls the required C application
functions. When a client connects to the Telnet server and enters a command
string, the telnet_process_cmd() function istriggered. The cmd pointer can
access the command string entered by the client.

Any reply by the Telnet server must be entered into the buffer buf. The size of
this buffer depends on the network maximum segment size. The third parameter,
buflen, contains the current maximum size for the buffer buf. Within this
function, we must make a command line parser. Thiswill be used to inter-
operate the Telnet client commands and call the C application functions.

if (tnet ccmp (cmd, "ADIN") == _ TRUE)
if (len >= 6) {
sscanf ((const S8 *) (cmd+5), "%d",é&ch);

val = AD _in (ch);
len = sprintf ((S8 *) buf, "\r\n ADIN %d = %d", ch, val);
return (len) ;

}
}

When the telnet_process_cmd() function istriggered, we can use the helper
function tnet_ccmp() to examine the contents of the command buffer cmd. In the
above example, the client command ADIN requests the current conversion value
for aselected ADC channel. It isimportant to note that the helper function
tnet_ccmp() converts the command string characters to uppercase. This means,
that all your menu options must be defined as uppercase strings. The example
parses the string to determine which channel isrequired. Then it callsthe user
ADC() conversion function. Next, it places the resultsin the reply buffer, which
is then sent back to the Telnet client. Finally, the number of bytes written into
the reply buffer must be returned to the RL-TCPnet library.

if (tnet _ccmp (cmd, "BYE") == _ TRUE) {
len = str copy (buf, "\r\nDisconnect...\r\n");
return (len | 0x8000) ;

}

Aswell as returning the number of bytesin the reply buffer, the most significant
bit of the return value acts as a disconnect flag. Setting this bit terminates a
Telnet session.

Exercise: Telnet Server

This exercise demonstrates a Telnet server with a simple command line parser.

100 Chapter 4. RL-TCPnet Introduction

In asimple Telnet server, the amount of data that can be sent to the Telnet client
islimited by the size of the reply buffer buf. However, it is possible to force the
RL-TCPnet library to make multiple calls to the telnet_process cmd() function.

Then, with each pass through the telnet_process_cmd() function, we can fill the
reply buffer, in order to send multiple packets of datato the client.

Ulé tnet process_cmd (U8 *cmd, U8 *buf, Ulé buflen, Ul6 xcnt) {
Ulé len = 0;

if (repeatcall) {
len |=0x4000;

}

return (len) ;

}

Thetnet_process_cmd() function return value contains arepeat flag. The repeat
flag isbit 14. When this bit is set, the RL-TCPnet library will make another call
to the tnet_process_cmd() function. Each time this function is called, the fourth
parameter, xcnt, will be incremented by one. By using the repeat flag and the
pass counter xcnt, the parsing code can send large amounts of data to the Telnet
client.

Exercise: Telnet Server

This exercise extends the basic parser used in the last example to send a long
reply to a client.

Telnet Helper Functions

In addition to the tnet_cbfunc() and tnet_process cmd() functions, there are
several custom helper functions. We have already seen the tnet_ccmp() function.
Thisissimilar to stremp(), except that it only compares the string contents up to
thefirst NULL or space character. Be careful with thisfunction, as all the
charactersin the string to be searched are converted to uppercase. The Telnet
server may also determine the MAC and IP address of the client PC. These
values are entered into a structure by calling the tnet_get_info() function.

/* ______________________________________
* net_config.h
K o e e e e = */
typedef struct remotem {
U8 IpAdr [IP_ADRLEN] ; //client IP address
U8 HwAdr [ETH ADRLEN]; //Client MAC address

} REMOTEM;

Getting Started: Building Applications with RL-ARM 101

RMOTEM user;
tnet get info(&user) ;

It is also possible to continuously send data from the Telnet server to the client,
without requests from the Telnet client. Thetnet_set_delay() function can be
used to ensure that the RL-TCPnet library callsthe tnet_process cmd() function
with a set periodic delay. The resolution of the delay period is the same as the
timer tick period. The standard value for thisis 100ms.

len = sprintf (buf, "ADINO = %d",AD in (0));

tnet set delay (20); // Delay for 2 seconds (20 * 100ms)
len |= 0x4000; // Request a repeated call; bit 14 is a repeat flag.

Exercise: Telnet Server Helper Functions

This exercise demonstrates the Telnet Server Helper Functions.

DNS Client

The RL-TCPnet | | brary Contai ns E--?"gsscgis::e Floe - Ethernet Metwork Interface [¥
aDomain Name System (DNS) @ manc gy
. . . H .. . ” - dd
client. The DNSclientisused to TS B o Stk
access a DNS server and resolve - Net_Confac B Defeuk Setoney
- . Ea Librar [=I- Primary DMS Server

a SymbOI ic addressto anumeric L TEPi.qRMiL.Iib ndzress bivte 1 194
I P addre$ One typ| Cal B2 Driver - Address byte 2 25

C . . [S EMAC.C - Address byte
application for the DNS client 2ddress bz; j fzg
Woul d be to Convert a [=- Secondary DMS Server

. : / Address byte 1
Conflgul’atlon Stl’l ng entered by a . Address b:teZ :4
human to ausable IP address, for [=owsder oot 2
exampl o post ke| I com . wCache Table size 20 Address byte 4 130

To configure the DNS client we must first enter the |P address of a primary and
secondary DNS server in the Net_config.c file. These values are not necessary if
the Dynamic Host Configuration Protocol (DHCP) client isenabled. Thisis
because the DHCP server will provide these addresses when the DHCP client
|leases an |P address. Next, enable the DNS client in the Net_config.c file.

The DNS cache table size defines the maximum number of DNS records that can
be held by the DNS client. Each record relates the symbolic address to the

102 Chapter 4. RL-TCPnet Introduction

numeric IP address. Each record is 12 bytesin size. Once the DNS client has
been configured, we can resolve a symbolic address by calling the
get_host_by name() function.

get_host by name ("www.keil.com", dns cbfunc) ;

This function takes the host symbolic name as a string and also the address of a
user-defined call back function. Once invoked, the DNS client will attempt to
resolve the address by contacting the DNS server. The results will be passed to
the call back function.

static void dns cbfunc (unsigned char event, unsigned char *ip) {
switch (event) ({

case DNS_EVT SUCCESS: // Success: IP address pointed at by *ip
break;

case DNS_EVT NONAME: // Name does not exist in DNS database.
break;

case DNS_ EVT TIMEOUT: // DNS sever timeout
break;

case DNS_EVT ERROR: // DNS protocol error

return;

}
}

Exercise: DNS Resolver

This exercise takes symbolic host addresses entered via a web page and resolves
the IP addresses.

Socket Library

The RL-TCPnet supports the internet applications, which are most useful to a
small, embedded system. However, you may wish to use the microcontroller’s
Ethernet peripheral for a custom application. For example, you may wish to use
the Ethernet peripheral for high-speed board-to-board communication within a
distributed control system. A number of industrial communication protocols,
such as PROFINET or MODBUS/TCP, use TCP/IP as their base communication
protocol. If you do wish to make a custom protocol, then RL-TCPnet has alow
level “Sockets” API. Thisallowsyou to send and receive raw TCP and UDP
frames. To demonstrate how the Sockets Library is used, we will establish a
TCP/IP link between two microcontrollers and send custom data packets as UDP
and TCP frames.

Getting Started: Building Applications with RL-ARM 103

User Datagram Protocol (UDP)
Communication

Inthisfirst example, we will ¥ U sackat
connect two boards together TE B

through an Ethernet crossover
cable. The boards will
communicate by sending packets
of dataas UDP frames.

Ea Configuration Files UDP Sockets [+
A Mumber of UDP Sockets 2
. Highest port for autoselect 1023

The Sockets API is a standard part of the RL-TCPnet library, so we can use our
first example PING project as astarting point. Then we just need the UDP
protocol to be enabled. UDP is a half-duplex bi-directional protocol. This means
that we can establish a single connection between two | P addresses and two

ports. We can then send and receive data packets between the two stations over
this single channel.

socket udp = udp get socket (0, UDP_OPT SEND CS|UDP_OPT CHK CS,
udp_callback) ;

First we must call udp_get socket(). We pass the type of service to this function.
Thisis not widely used, so we enter the default value zero. We can also opt to
generate and check the UDP packet checksum. Next, we pass the address of a
callback function, which will be called if a packet isreceived. Once called, this
function will return a handle to a free socket.

udp_open (socket udp, 1001);

Once we have a free socket, we can open a UDP port for communication.

U8 *sendbuf;

When the port is open, we can send and receive UDP packets. To send a packet,
we must first acquire a UDP packet dataframe. To do thiswe call the
udp_get_buf() function and pass the size of the data packet that we want to send.
This can be up to the maximum Ethernet frame size of 1500 bytes. This function
then returns a pointer to the data packet buffer. Next, we use this pointer to write
our application datainto the UDP packet.

udp_send (socket_udp, Rem IP, 1001, sendbuf, SENDLEN) ;

104 Chapter 4. RL-TCPnet Introduction

Once the data has been written into the packet, we can use udp_send() to transmit
it. When we call the udp_send() function, we must pass the socket handle, the
remote | P address, the remote port, the buffer pointer and the data packet size.
Thiswill cause RL-TCPnet to send the frame. The UDP protocol isa*“best
effort” protocol. This means that once the packet is sent there is no
acknowledgement or handshake from the destination station. If you require a
positive acknowledgement that the packet was received, then the destination
station must send areply UDP frame.

Ulé udp callback (U8 soc, U8 *rip, Ulé rport, U8 *buf, Ul6 len) {

if (soc == socket udp) {
Process_ packet (buf,len);

return (0) ;

}

To receive the UDP data packets the destination station must make the same “ get
socket” and “port open” calls. Thiswill ensurethat it islistening for the UDP
packet. When a packet arrives, it is processed by the RL-TCPnet and the
udp_callback() function istriggered. This function receivesthe local socket
handle, the remote I P address, and the port number of the sending station. It also
receives a pointer to the received data along with the number of bytes received.
The destination station can then reply back to the source station using its |P
address and port humber.

Exercises UDP Sockets

This exercise demonstrates peer-to-peer communication between two evaluation
boards using the UDP protocol.

Getting Started: Building Applications with RL-ARM 105

Transmission Control Protocol (TCP)
Communication
We will use the same basic PING project in order to establish TCP

communication between the two boards. Of course, this time we must enable the
TCP protocol in place of UDP.

- Highest port For autoselect 1023
- Murmber of Retries 5

TCPismore complex than UDP. &' fese
TCP SUp.pOHESfU” duplex . E a r;ﬂz;'!:s ' T(TNSan:t:soF TCP Sockets 2I7
communication. TCP configures Féfﬁﬁf:f.ns Files

one station and port as a server, Het_Canfig.c of Relr

which listens for data packets i S e sseonts 120
sent by aclient on the specified =S B e

port. In order to support full

duplex communication, a TCP connection will use two ports on both stations.
One will receive data and the other will send data. Unlike UDP, the TCP
protocol guarantees delivery of data packets. This means that delivered packets
are acknowledged, lost packets are retransmitted, and data spread over multiple
frames will be delivered in the correct order.

socket tcp = tcp get socket (TCP_TYPE CLIENT, 0, 10, tcp callback) ;

To establish a TCP connection we must first get afree socket. Inasimilar way
tousing UDP, we call atcp_get socket() function. We then pass the type of
service and a callback function to handle received packets. In addition, we must
also pass an idle timeout period and a connection type. The basic connection
types are server or client. A client socket can initiate a connection to aremote
server, whereas a server listens for aclient connection. It isalso possible to
configure a socket as a client-server. Thiswould alow it to both listen for a
connection and initiate a connection. The TCP connection can also be optimized
for large data transfers by enabling an acknowledge delay as shown below.

socket tcp = tcp get socket (TCP_TYPE CLIENT|TCP-TYPE DELAY ACK,
0, 10, tcp_callback) ;

The TCP protocol is more complex than UDP. Before we can open a TCP port
or send data, we must examine the current port state.

TCPState = tcp get state (socket tcp);

106 Chapter 4. RL-TCPnet Introduction

Thetcp_get state() function will return the current state of a socket. The
possible socket states are shown below:

State Description
TCP_STATE_FREE Socket is free and not allocated yet. The function cannot return this value.
TCP_STATE_CLOSED Socket is allocated to an application but the connection is closed.
TCP_STATE_LISTEN Socket is listening for incoming connections.
TCP_STATE_SYN_REC Socket has received a TCP packet with the flag SYN set.
TCP_STATE_SYN_SENT Socket has sent a TCP packet with the flag SYN set.
TCP_STATE_FINW1 Socket has sent a FIN packet, to start the closing of the connection
TCP _STATE FINW2 FIN packet acknowledged by remote machine
TCP_STATE_CLOSING Connection was aborted
TCP_STATE_LAST_ACK Saocket is connected to remote peer.
TCP_STATE_TWAIT Connection has been closed
TCP _STATE CONMNECT Sent data has been acknowledged by remote peer

On thefirst call, tcp_get_state() will report that the socket is closed. In this case,
we can open the socket for use and connect to aremote | P and port address.

if (TCPState == TCP_STATE_CLOSED) {
tcp connect (socket tcp, Rem IP, PORT NUM, O0);

}

Unlike UDP, we cannot simply prepare a packet of data and send it. Each TCP
frameis acknowledged by the remote station, so RL-TCPnet must hold each
frame in memory until it is acknowledged. If no acknowledgement arrives, then
the frame data must be available for re-sending. This requires careful
management. Obviously if we send lots of TCP frames, all of the
microcontroller RAM will be used up by TCP datawaiting for an
acknowledgement. Before we can send a new frame, we must call

tcp_check _send(). This function ensures that the TCP connectionisvalid and
that the socket is not waiting for an earlier packet to be acknowledged.

If the socket is free, we can allocate a TCP data buffer and send a new packet in a
similar fashion to the UDP packets.

if (tcp check send (socket tcp) == TRUE)
sendbuf = tcp get buf (SENDLEN) ;
tcp _send (socket tcp, sendbuf, SENDLEN) ;

}

Getting Started: Building Applications with RL-ARM 107

On the server side, we must get a socket and configureit asa server. Then we
need to open a port to listen for a client connection.

socket_tcp = tcp get_ socket (TCP_TYPE SERVER, 0, 10, tcp_callback) ;
if (socket tcp != 0) {
tcp listen (socket tcp, PORT NUM) ;

}

When aremote node sends a TCP packet, it will be received by RL-TCPnet and
the callback function will be triggered.

Ulé tcp callback (U8 soc, U8 evt, U8 *ptr, Ul6 par) {

return (0) ;

}

Thisfunction is passed the socket handle, a pointer to the data packet and the
number of bytesin the data packet. Tcp_callback() is aso passed an event code
evt. The evt code specifies the type of TCP connection event.

State Description
TCP_EVT_CONREQ Remote host is trying to connect to our TCP socket.
TCP_EVT _ABORT Connection was aborted
TCP_EVT CONNECT Socket is connected to remote peer
TCP_EVT_CLOSE Connection has been closed
TCP_EVT_ACK Sent data has been acknowledged by remote peer
TCP_EVT_DATA TCP data frame has been received, 'ptr' points to data

When aremote station first connects to the TCP server, port tcp_callback() will
be triggered with the TCP_EVT_CONREQ condition. In this case, the pointer,
par, points to the IP address of the remote station. The parameter par holds the
remote port number. If the server wants to refuse connection to the remote
station, it can return oxoo and the connection will be closed. Otherwise it will
return oxo1. All other states should return oxoo. Once the connection has been
accepted, any valid TCP packet will trigger the TCP_EVT _DATA condition and
the packet data can be read from the frame buffer.

Exercises TCP Sockets

This exercise demonstrates client-server communication between two evaluation
boards, using the UDP protocol. A second example uses a TCP socket to get the
current date and time from a remote daytime server.

108

Chapter 4. RL-TCPnet Introduction

Deployment

During development you can use the default Media Access Control (MAC)
address provided in Net_config.c. However, when you come to manufacture your
final product, each unit you are making must have a unique MAC address. Itis
possible to purchase a block of 4096 MAC addresses from the |EEE web site.
Thisiscalled an Individual Address Block (IAB). If you plan to use more than
4096 MAC addresses, you can buy an Organizational Unique Identifier, which
gives you ox1000000 MAC addresses. For more details, see the |IEEE web site at
http://standards.ieee.org/regauth/oui/index.shtml.

During production, there are two strategies for programming the MAC address of
each unit. You can initialy program each unit with the same code and MAC
address. Then, during the final test phase, the MAC address can be
reprogrammed to aunique value. This can be done by adding some additional
code to your application for this purpose.

Alternatively, the MAC address can be located to afixed addressin its own
linker segment. In the compiler tool chain, the ElftoHex.exe converter takes the
output of the linker and generates a HEX file. This utility can produce a HEX
file for each program segment. This means that we can have all our program
code in one segment. Only the MAC addressisin a separate HEX file. Thus, we
can burn the program HEX file into each unit and then increment and program
the MAC address separately. This method is also useful if your microcontroller
has a One-Time Programmable (OTP) memory region, which is programmed
separately from the main Flash memory.

Exercise: MAC Programming

This exercise demonstrates generating a program HEX file and a MAC address
HEX file for production programming.

Getting Started: Building Applications with RL-ARM 109

Serial Drivers

Although most RL-TCPnet applications will connect to a TCP/IP network using
an Ethernet interface, it is also possible to use a UART connected to a modem to
establish a Serial Line Internet Protocol (SLIP) or Point-to-Point (PPP)
connection with the network.

In order to configure the RL-TCPnet library to establish a PPP connection, you

must enable the PPP support in Net_config.c first. Like the Ethernet interface, the
PPP interface allows you to define the | P address, subnet, and the DNS server. [t
also gives you the option of

. . []-PPP Metwark Interface ¥
having them assigned £ P Address
. (. Address b
automatically by the PPP host. e o
-Address byte 3 125
- . . hddress byte 4 1
In addition to these basic 5 Subnt mask
H [#- Primary DS Server
parameters, we can also definea (=& & Sucondary DN Saver
main, o -~ Obtain Client IP address automatically Ica

character map, which defines
replacement strings for

iguration Code - Use Default Gateway on remate Metwark [V
H] Met_Config.c —» - Async Cantrol Character Map

characters used for modem and _ zpt:m P e 2t oo
flow control. If you are SEomr R, oo
communicating with a modem or = Resirisionsad e .
using software flow control, itis - LCP Retry Tmeot i secands 2
necessary to send control ooty g snds 5
characters alongside the data o Tt roscnds 2

packets. The values used for the
control characters may not be sent in the data packets. We must encode the
values used as control characters, in order to send them in a data packet. For
example, if we are using the Xon/Xoff software flow control, the value ox11 is
used to start the serial data stream, ox13 isused to halt it.

To alow the values ox11 and ox13 to be sent as part of a data packet, we must
define atwo-byte encoding that replaces each instance of these valuesin the data
stream. The encoding used in SLIP and PPP protocolsisthe ASCII escape
character (ox7D), followed by the value to be encoded X ORed with ox2o.

XON =ox11 Async control character = ox31
XOFF =0x13 Async control character = ox33

When a data packet contains ox11 it will now be replaced with ox7p ox31.

110 Chapter 4. RL-TCPnet Introduction

We must also replace the Ethernet driver with a serial driver. Serial driversfor
supported microcontrollers are located in C:\KEIL\ARM\RL\TCPNET\DRIVERS.

The seria driver contains four functions. Thefirst, init_serial(), initializes the
selected UART to a defined baud rate. The next two functions, com_getchar()
and com_putchar(), are used to read and write a single character to the UART.
These are both interrupt-driven functions, whose purpose is to ensure that thereis
no loss of data at high datarates. The final function iscom tx_active(), whichis
used to check if the UART istransmitting data.

Once the serial driver has been added, we can use RL-TCPnet in exactly the
same way as we would use an Ethernet-based system. However, there are some
dedicated SLIP and PPP functions, which are used to establish the serial
connection. If the RL-TCPnet application is acting as aclient, it must actively
open a connection to the server. In this case there are two functions,
ppp_connect() and slip_connect(), which dia up aremote system.

ppp_listenconnect ("024345667", "<user>", '"<password>");
slip connect ("024345667");

In the case of the PPP protocol, we must also pass a username and a password.
For a server application, there are two listen functions that initialize the
connection and wait for a client to connect.

ppp_listen() ; slip_listen() ;

Once connected, we can monitor the state of the SLIP or PPP link using the two
functions below:

ppp_is_up () ; slip is up();

Both these functions return TRUE if the serial link isworking, or FALSE if it has
been lost. Once we have finished with the serial connection, it must be closed
using the either of the functions below:

ppp_close () ; slip close() ;

Exercise: PPP Connection

This exercise demonstrates replacing the Ethernet driver with a serial driver
configured for the Point-to-Paint protocol.

Getting Started: Building Applications with RL-ARM 111

Chapter 5. RL-USB Introduction

Today the Universal Serial Bus (USB) is the standard way to connect external
peripherals to a Personal Computer (PC). Consequently, if you are designing an
embedded system that has to interact with a PC, your customers will expect it to
use aUSB port. Although USB is not a simple protocol, the process of designing
aUSB peripheral has become alot easier over the last few years. In this chapter,
we will outline the key concepts of the USB protocol. Afterwards we will
consider using the RL-USB driver to designh a number of USB-based peripherals.
The USB driver in RL-ARM can be used standalone or with RTX.

The USB Protocol — Key Concepts

The USB protocol was first introduced in 1996. It is supported by the Windows
operating system from Windows 2000 onwards. USB is a high-speed serid
interface designed to be “plug and play” making it easier to add peripherals. It
aimsto allow end users to build sophisticated computing systems without having
to worry about the underlying technology. This ease of use comes at the expense
of agreat deal of design complexity. To design USB peripherals, you need to
understand the microcontroller firmware, the USB protocol, the USB Device
Classes and the USB host operating system. Thisis much easier now that the
USB protocol has reached a mature stage of adoption.

USB Physical Network

The USB network supports three
communication speeds. Low
speed runs at 1.5 Mbit/sand is
primarily used for simple devices
like keyboards and mice. Full

speed runs at 12 Mbit/s and is ﬁ\
suitable for most other v
peripherals. Finally, High speed m
runs at 480 Mbit/sand isaimed

at video devices that require high
bandwidth. = J E%

Host (Root Tier)

Tier 1

112 Chapter 5. RL-USB Introduction

The physical USB network isimplemented as atiered star network. The USB
host provides one attachment port for an external USB peripheral. If more than
one peripheral is required, connect a hub to the root port and the hub will provide
additional connection ports. For alarge number of USB peripherals add further

hubs to provide the ports needed. The USB network can support up to 127

external nodes (hubs

and devices). It Performance Application Attributes
supports six tiers of Low Spead Keyboard, Mouse s

i Interactive Devices Game Peripherals TE
hubs and requires one bhginislings Monitor Configuration | E358 0f Use
bus master. Multiple Peripherals

Low Cost
. Eull Speed Printers Hot Plugging
Each hub or device phmi_ Audio Scanners Ease of Use
may be self-powered Compressed Video Telephony Guaranteed Latency
S00KKb/s - 10Mb/s Audio Guaranteed Bandwidth

or bus-powered. If a Multiple Devices
device is bus-powered,
. p High Speed Video High Bandwidth
It can consume a Video, Disk Mose 84 Guaranteed Latency
maximum of 500mA at | 25500 ms Eatee Ease of Use

5V.

Logical Network

To the devel oper the logical USB network appears as a star network. The hub
components do not introduce any programming complexity and are essentialy
transparent as far as the programmer is concerned. Therefore, if you develop a
USB device by connecting it to aroot port on the host, the same device will work
when connected to the host via severa intermediate hubs.

@ M |\laster
@ ‘_ o

To the programmer the USB
network appears as a star
network with the host at the
centre. All the USB devices are
available as addressable nodes.
The other key feature of the
USB network isthat itisa
master/slave network. The USB
host isin control. On the
network, thisisthe only device
that can initiate a data transfer.

Getting Started: Building Applications with RL-ARM 113

With USB 2.0, peer-to-peer communication is not possible. USB On-The-Go
(OTG) isan extension to the USB 2.0 specification, which directly supports peer-
to-peer communication. For example, allowing pictures stored on a camerato be
transferred directly onto a USB memory stick without the need for a host or other
USB master.

Since the USB network is designed to be “plug and play”, the host has no
knowledge of anew device when it isfirst plugged onto the network. It first
needs to determine the bit-rate required to communicate to the new device. This
is done by adding a pull-up resistor to either the D+ or D- line. If the D+ lineis
pulled up, the host will assume that a full speed device has been added. A pull-
up on D- means low speed. High-speed devicesfirst appear as full speed and
then negotiate up to high speed, once the connection has been established.

USB Pipes And Endpoints

Once a device has been connected to the host and the signaling speed has been
determined, the host can start to transfer datato and from the new device. Data
packets are transferred over a set of logical connections called pipes. A pipe
originates from a buffer in the host. It is connected to aremote device with a
specific device address. The pipeisterminated inside the device at an Endpoint.

In microcontroller terms, the
Endpoint may be viewed as a
hardware buffer where the datais
stored. The Endpoint also

HOST DEVICE

Data End Point

generates an interrupt, which Buffer Zero
signalsto the Central Processing

Unit (CPU) that a new data —
packet has arrived. In the case of Data et Point
an IN pipe (transferring data into Buter One
the host) the Endpoint buffer

must be filled with data. The
host will request this data. Once e End Point
the data has been transferred, an bl
interrupt will be generated and S—_—
the CPU or DMA unit must refill

the Endpoint buffer with fresh
data.

1]

114 Chapter 5. RL-USB Introduction

These logical pipes are
implemented on the
serial bus astime
division multiplexing on '
the USB network. Each —
pipe can make a data
transaction within a
frame. Thebusis
precisely defined into
1msec frames. Every
Imsthe host PC sends a
Start-of-Frame (SOF)
token to define the 12 Mbit/s businto a series of frames. Each pipeisallocated a
dot in each frame, so that it can transfer data as required.

FIFE FIPE

USB supports several different types of pipeswith different transfer
characteristics. Thisisin order to support the needs of different types of
application. It is possible to design a USB device capable of supporting several
different configurations. These can then be dynamically changed to match the
running host application. The types of pipes available are: Control, Interrupt,
Bulk, and Isochronous. All of these pipes are unidirectional, except the control
pipe that is bidirectional. The Control pipeisreserved for the host to send and
request configuration information to and from the device. Generally, the
application software does not useit. The unidirectional pipes are defined as
either IN pipes, which transfer data from the device to the host, or OUT pipes,
which transfer data from the host to the device. When a deviceis connected to a
USB network, it will always assume network address 0. The host uses a
bidirectional control pipe to connect to Endpoint 0. The host and the device then
go through an enumeration process. During this process, information about the
USB deviceis sent to the host. The host also assigns the device a network
address. This keeps address O free for new devices.

The remaining types of pipe are used solely for the user application. Typically,
within the USB peripheral of amicrocontroller the physical Endpoints are
grouped as logical pairs. Endpoint 1 will consist of two physical Endpoints. One
is used to send datain to the USB host and one is used to receive data out from
the USB host.

Getting Started: Building Applications with RL-ARM 115

Interrupt Pipe

Thefirst of the varieties of user pipeisan interrupt pipe. Since only the host can
initiate a data transfer, no network device can asynchronously communicate to
the host. Using an Interrupt pipe, the developer can define how often the host
can request a data transfer from the remote device. This can be between 1ms and
255ms. Aninterrupt pipe in USB has a defined polling rate. For example, in the
case of amouse, we can guarantee a data transfer every 10 ms. Defining the
polling rate does not guarantee that datawill be transferred every 10 ms, but
rather that the transaction will occur somewhere within the tenth frame. For this
reason, a certain amount of timing jitter isinherent in a USB transaction.

Isochronous Pipe

The second type of user pipeis called an isochronous pipe. 1sochronous pipes
are used for transferring real-time data such as audio data. 1sochronous pipes
have no error detection. An Isochronous pipe sends a new packet of data every
frame, regardless of the success of the last packet. This means that in an audio
application alost or corrupt packet will sound like noise on the line until the next
successful packet arrives. An important feature of 1sochronous datais that it
must be transferred at a constant rate. Like an Interrupt pipe, an |sochronous
pipeis also subject to the kind of jitter described above. In the case of
Isochronous data, no interrupt is generated when the data arrives in the Endpoint
buffer. Instead, the interrupt is raised on the Start-Of-Frame token. This
guarantees aregular 1 msinterrupt on the Isochronous Endpoint, allowing data to
beread at aregular rate.

Bulk Pipe

The Bulk pipeisfor al datawhich is not Control, Interrupt, or Isochronous.
Dataistransferred in the same manner and with the same packet sizesasin an
Interrupt pipe, but Bulk pipes have no defined polling rate. A Bulk pipe takes up
any bandwidth that is left over after the other pipes have finished their transfers.
If the busis very busy, then a bulk transfer may be delayed. Conversely, if the
busisidle, multiple bulk transfers can take place in asingle Ims frame. Interrupt
and isochronous are limited to a maximum of one packet per frame. An example
of bulk transfers would be sending datato a printer. Aslong asthe datais
printed in a reasonable time frame, the exact transfer rate is not important.

116 Chapter 5. RL-USB Introduction

Bandwidth Allocation

The USB protocol is amaster slave protocol so all communication isinitiated by
the host. Therefore, it is up to the host to determine what pipe packets are
contained in each USB frame. Any ending Control and | sochronous pipe packets
will always be sent. During enumeration, any interrupt pipes will specify their
regquired polling rate. Any remaining bandwidth will then be available for use by
Bulk pipes. The host must also manage the loading of the USB network when
multiple USB devices are connected. Control pipes are alocated 10% of the total
USB bandwidth. Interrupt and Isochronous pipes are given 90%. Bulk pipes use
any idle periods on the network. These are maximum allocations; so on most
networks there will be plenty of unused bandwidth. If anew deviceis connected
to the network, the host will examine its communication requirements. |If these
exceed the bandwidth available on the network the host will not allow it to join
the network.

Pipe Type Control Isochronous (FS and HS) Interrupt Bulk (FS and HS)
Data Format Pre-or Vendor Defined Stream No Structure Stream
Transfer Direction Bi-directional Uni-direction Either Input or Qutput Either input or output
Packet Size (bytes) 8 16 32 or 64 1~1023 LS:<8 FS:<64 8 16 32 or 64
Bus Access Best Effort Guaranteed < 90% Periodic <90% 1ms ~255ms Good Effort No Guaranteed
Packet Size (bytes) Setup, data and status No retry, data toggling Retry, data toggling Retry, data toggling

Getting Started: Building Applications with RL-ARM 117

Device Configuration

When a device isfirst connected to the USB host, itssignaling speed is
determined. It has Endpoint O configured to accept a Control pipe. In addition,
every new device that is plugged onto the network is assigned address 0. This
way the USB host knows which bit rate to use. It has one control channel
available at address 0 Endpoint 0. This Control pipe is then used by the host-PC
to determine the capabilities of the new device and to add it to the network. This
processis caled “Enumeration”. Therefore, in addition to configuring the USB
peripheral within the microcontroller, you need to provide some firmware that
responds to the USB host enumeration requests. The data requested by the host
isheld in ahierarchy of descriptors. The device descriptors are arrays of data,
which fully describe the USB device' s communication interface.

Device
Descriptor

Config Config
Descriptor Descriptor

Interface
Descritor

Interface
Descritor

Interface Interface
Descritor Descritor
EP EP EP EP EP EP EP EP
Descrip Descrip Descrip Descrip Descrip Deserip Descrip Descrip

The descriptors are simply arrays of data, which must be transferred to the host in
response to enumeration requests. Asyou can see from the picture above, it is
possible to build complex device configurations. Thisis because the USB
network has been designed to be as flexible and as future-proof as possible.
However, the minimum number of descriptors required is a device descriptor,
configuration descriptor, interface descriptor, and three Endpoint descriptors (one
control, one IN and one OUT pipe).

118 Chapter 5. RL-USB Introduction

Device Descriptor

At the top of the descriptor treeisthe Device Descriptor. This descriptor
contains the basic information about the device. Included in this descriptor are a
Vendor ID and aProduct ID field. These are two unique numbers identifying
which device has been connected. The Windows operating system uses these
numbers to determine which device driver to load.

The Vendor ID number is the number assigned to each company producing USB-
based devices. The USB Implementers’ Forum is responsible for administering
the assignment of Vendor IDs. Y ou can purchase aVendor ID from their web
site, www.usb.org, if you want to use the USB logo on your product. Either way
you must have aVendor ID if you want to sell a USB product on the open
market.

The Product ID is a second 16-bit field containing a number assigned by the

manufacturer to identify a specific product. The device descriptor also contains a
maximum packet size field.

Offset l Field {_Size

Application

(decimal) (bytes) (decimal)

0 Length 1 Descriptor size in bytes

1 DescriptorType 1 The constant DEVICE (01h)
2 USB 2 USB specification release number (BCD)
4 DeviceClass 1 Class Code

DeviceSubclass Subclass Code

DeviceProtocol Protocol Code

MaxPacketSize(0)

8 idVendor Vendor ID

10 idProduct 1 Product ID

12 Device 1 Device Release Number (BCD)

14 Manufacturer 1 Index of string descriptor containing serial number

Product Number of possible cofigurations

SerialNumber Number of possible configurations

NumConfigurations Number of possible configurations

| |
|]
[)
[|
[I
[]
[)
[7 1 I Maximum packet size for Endpoint 0
[]
[i
[]
[|
[]
[[
[]

. S . S S . S S e S S
e e e e e e e e .

Getting Started: Building Applications with RL-ARM 119

Configuration Descriptor

The Configuration descriptor contains information about the device’ s power
reguirements and the number of interfacesit can support. A device can have
multiple configurations. The host can select the configuration that best matches
the requirements of the application software it is running.

Offset (decimal) Field Size (bytes) Description
¥ - -+
0 Length 1 Descriptor size in bytes
1 DescrptorType 1 The constant Configuration (0.2h)

Size of all data returned for this

2 ‘hatglLengin 2 configuration in bytes
4 Nufilfiterfacs 1 Number of interfaces the configuration
supports
5 ConfigurationValue 1 Identifier for SetﬁCx':mf:guratlon and
Get_Configuration requests
8 Configuration 1 Index of string desc.rlptor for the
configuration
7 Power Attributes 1 Self power/bus power and remote

wakeup settingd

Bus power required, expressed as
L I MaxFiower [1 (maximum miliamperes)

120

Chapter 5. RL-USB Introduction

Interface Descriptor

The Interface descriptor describes a collection of Endpoints. Thisinterface
supports a group of pipesthat are suitable for a particular task. Each
configuration can have multiple interfaces and these interfaces may be
dynamically selected by the USB host. The Interface descriptor can associate its
collection of pipeswith adevice class that has an associated class device driver
within the host operating system. The device classistypically afunctional type
such as printer class or mass storage class. These class types have an associated
driver within the Windows operating system. Thiswill be loaded when a new
USB devicein their classis connected to the host. 1f you do not select a class
typefor your device, none of the standard USB driverswill beloaded. In
this case, you must provide your own devicedriver.

(Offset Field Size Application
L (decimal) l (bytes) | (decimal)
' o %
0 Length 1 Descriptor size in bytes

S z

1 DescriptorType 1 The constant Interface (04h)
2 InterfaceNumber 1 Number identifying this interface
3 AlternateSetting 1 Value used to select an alternate setting
4 NumEndPoints 1 Number of endpoints supported, except Endpoint 0
-4 - o
5 InterfaceClass 1 Class Code
6 InterfaceSubclass 1 Subclass Code
7 InterfaceProtocol 1 Protocol Code
8 Interface 1 [Index of string descriptor for the interface
h

Getting Started: Building Applications with RL-ARM 121
Endpoint Descriptor
The Endpoint descriptor transfers configuration details of each supported
Endpoint in agiven interface, such as the:
= Transfer type supported,
= Maximum packet size,
= Endpoint number, and
= Polling rate (if it isan interrupt pipe).
Offset . [si Applicati
o ris | o it |
[0 [Length l 1 Descriplor size in bytes
1 DescriptorType 1 The constant Endpoint (05h)

'

EndpointAddress I

Endpoint number and Direction

Power Attributes

Transfer type supported

"

wMaxPacketSize

Maximum packet size supported

.
>

h,

Interval

A\
)

N

A
>

e

Maximum latency/polling interval/NAK rate

Thisis not an exhaustive list of al the possible descriptors that can be requested
by the host. However, as a minimum, the USB device must provide the host with
device, configuration, interface, and Endpoint descriptors. Once the device has
successfully joined the USB network, the USB host sends further setup
commands. It will beinstructed to select a configuration and an interface to
match the needs of the application running on the USB host. Once a
configuration and an interface have been selected, the device must service the
active Endpoints to exchange data with the USB host.

122 Chapter 5. RL-USB Introduction

RL-USB

RL-USB is an easy-to-use USB software stack that provides acommon API
across arange of USB peripherals found on different microcontroller devices.
RL-USB can communicate with a custom Windows device driver. Class support
isprovided for HID, MSC, ADC, and CDC devices. Together, these classes
provide USB design support for the majority of small, embedded devices. Class
support uses the native device drivers within the Windows operating system.
This removes the need to devel op and maintain a Windows device driver and
greatly smplifies the development of a USB device.

RL-USB Driver Overview

To support many types of data (e T Poete])
transfers, the RL-USB driver is
highly configurable. A driver
structure overview is given before
looking at specific examples.

The RL-USB stack offers support
for theHID, MSC, CDC, and ADC
USB classes. Each class hasits
own collection of Endpoints and
Interface descriptors, and allows integrating several classes into one device. For
example, add HID support to transfer small amounts of configuration information
to and from the device. The information is transferred to the host during
enumeration. The host can then switch between device interfaces depending on
what type of softwareit isrunning. For example, a datalogger obtains the hosts
configuration information, but also transfers large amounts of logged data stored
on an SD card. Such adevice could be configured asaHID device allowing a
client application on the host to send small amounts of data. The same device
could be configured as a storage device. The user could then browse the device
file system the way he would browse a flash pen drive and retrieve the logged
data as a standard file. A Composite DeviceisaUSB device that supports more
than one class.

The RL-USB driver isvery flexible in order to meet the needs of different USB
applications. The layout of the driver is more complex than the RL-TCPnet
library. To fully understand the RL-USB driver, take some time to look through
each of the sourcefiles to get familiar with its layout.

Getting Started: Building Applications with RL-ARM

123

The RL-USB stack is made up of the following files:

usbcfg.h - isatemplated configuration file that allows you to enable class
support for the Human Interface, Mass Storage, and Audio classes. Isisalso
used to set the USB configuration and to enable interrupt handlers for the
following events:

o Device events: such as start of frame, USB bus reset, USB wakeup.

e Endpoint events: Interrupts raised when an IN or OUT packet is
transferred from a given interrupt.

e USB core events: These respond to commands such as set interface sent on
the control pipe (Endpoint 0).

usbuser .c - this module contains event handlers for Endpoints 1 — 15. These
interrupt handlers allow you to read and write data to the individual endpoint
buffers.

usbdesc.c - this module contains the USB descriptors sent to the host during
enumeration. These are arrays of data that must mirror the configuration of
the RL-USB driver firmware. If you make a mistake here, nothing will
work!

ush.h - thisfile provides an extensive set of #defines for use in the usbdesc.c
file. Thisalowsyou to construct the descriptorsin “natural language” rather
than arrays of numbers. Thisisahuge help in constructing correct
descriptors.

usbhw.c - thisfile provides the necessary low level code for a given USB
controller. Normally, you will not need to edit thisfile.

usbcore.c - thisfile contains the bulk of the generic RL-USB code.
Normally, you will not need to edit thisfile.

usbhid.c - thisisthe support file for the HID class. By default, the HID class
is configured to transfer one byte IN and OUT packets to the host. The HID
class will support a maximum packet size of 64 bytes.

usbmsc.c - thisis the support file for the mass storage class. The RL-USB
MSC driver links directly to the RL-FlashFS, so normally, you will not need
to edit thisfile.

usbadc.c - thisis the support file for the Audio class support. Thisclass
transfers data by isochronous packets and you will need to add the necessary
code to transfer this data to and from your audio peripherals.

124 Chapter 5. RL-USB Introduction

First USB Project

The RL-USB driver may be used i=-:3 USE Driver

standalone or with the RTX =9 Source Fies

RTOS. The RL-USB driver is é P i

contained in four source modules [#] RT% Confige [USB Configuration

and one ternp| ated include file. ushcfg.h —— . LISE Event Handlers

The bulk of the RL-USB driver | [stertups B USE Class Support 7]
i i [=1-£5 RL USE Driver

codeislocated in usbcore.c. - [#] usbdesc.c

Generally, you do not need to (%] ushuser.c

modify this code. The device- % e

specific codeislocated in :

usbhw.c. A version of thisfileis provided for al supported microcontrollers.

Any functions that need to be customized to handle USB bus events, such as

suspend and resume, are located in usbuser.c. The USB descriptors are all located

inusbdesc.c. The configuration options for the RL-USB driver are located in

usbegf.h. When using the RL-USB driver, you must always remember that all

configuration options are made on two levels. On one level, we are configuring

the hardware and providing the code to service the enabled Endpoints. On

another level, we are configuring the Device Descriptors to describe the hardware

configuration to the USB host.

Configuration

The configuration optionsin = LSE Canfiguration
usbcfg.h are split into three main 5
categories. Thefirst category is
the USB configuration section.
The entries in this section are
used to configure the USB
hardware. If you make any -
changes here, you must also modify the USB descriptor strings. We will
examine the USB descriptors in the next section.

156 Power Bus-powered
- Max Mumber of Interfaces 1

- Max Mumber of Endpoints 4
- Max Endpoint 0 Packet Size G Bytes
- DMA TransFer r

The first option allows you to define the device' s power source: either from a
local power supply or from the USB bus. Next, we can define the number of
interfaces. For asimple device, thiswill be one. However, if you are designing a
composite device, supporting more than one USB class, you will need an
interface for each supported class. Then, we must define the maximum number
of Endpoints used. Inthe RL-USB, stack Endpoints are defined aslogical

Getting Started: Building Applications with RL-ARM

125

Endpoint pairs. Each Endpoint supportsan IN and an OUT pipe. Consequently,
we define the maximum number of Endpoints as a multiple of 2. The next option
alows us to define the maximum packet size for Endpoint 0. The default transfer
sizeon Endpoint 0 is 8 bytes. Aswe will seelater, this can be increased to a
maximum of 64 bytes, for faster transfer of data. Finaly, if present, the
microcontroller DMA unit can be enabled and configured to transfer datato and
from selected Endpoint buffers.

#if USB_RESET EVENT
void USB Reset Event (void) {
USB_ResetCore () ;

#endif

Event Handlers

The next set of optionsin usbcfg.h allows usto =)+ LIS Event Handlers

configure the USB event handlers. We can =) Device Everits

enable support for USB bus events. Depending +Pawer Bvent C
on the USB controller, these may be handled by et :Z
the USB controller hardware or may need - Resums Evet -
additional software support. Each enabled event -Remote Wakeup Evert [
has a matching function in usbuser.c. The critical - Start of Frame Event [
functions, such asreset_ event() will be provided, ~Errar Event r
but optional functions, such as start of frame - Enclpoint: Events

event will be empty stubs, and you will need to (8- USE Core Everits

provide custom code. There are similar event handlers for each of the enabled
Endpoints. Each Endpoint function is responsible for maintaining the IN and
OUT buffersfor the given Endpoint.

/**
* usbuser.c
**/

void USB_EndPointl (DWORD event) {

switch (event)

case USB_EVT IN:
GetInReport () ;
USB_WriteEP (0x81, &InReport, sizeof (InReport)) ;
break;

case USB_EVT OUT:
USB_ReadEP (0x01, &OutReport) ;
SetOutReport () ;
break;

126 Chapter 5. RL-USB Introduction

The exception is Endpoint 0. The event handler =) Endpoint Events

for Endpoint O islocated in usbcore.c. Asthis Endpaint 0 Event [v
Endpoint handles the control pipe, it is not Endpoint 1 Event 2
necessary to modify this function. Endpoint 2 Event [—

The RL-USB driver also provides some additional call-back functionsto handle
additional USB control events. These are generally needed for more complex
designs of composite devices that have multiple configurations and interfaces.

The set_configuration() and set_interface() - USE Core Events

functions are triggered when the USB host . Set Configuration Event [
requests a particular configuration or interface - Set Interface Event r
that the device has defined during its enumeration - Set/Clear Feature Event [~

with the USB host. The set_feature() function
alows the USB host to send application control information to the device. For
example, it might send a volume setting in the case of an audio application.

USB Descriptors

Once you have configured the USB hardware, it is also hecessary to modify the
USB Device Descriptors, so that they match the hardware configuration. The
USB Device Descriptors are ssmply arrays of formatted data. They are contained
in the usbdesc.c module. Asthe USB specification is designed to support awide
range of devices, the USB Device Descriptors can be complex to construct and
test. RL-USB provides an additional header file usb.h to assist in the construction
of Device Descriptors. This provides a set of macros and type definitions for the
key USB Device Descriptors.

In the Device Descriptor, you need to enter your VendorID and ProductID. The
Endpoint zero maximum packet size is automatically passed from the usbcfg.h
setting. The remaining key descriptors are created as one large array. They are:
Configuration Descriptors, Interface Descriptors, and Endpoint Descriptors.

/**

* usbdesc.c
**/

const U8 USB_DeviceDescriptor [] = ({
USB_MAX_ PACKETO, // bMaxPacketSize0
WBVAL (0xC251), // idvendor

WBVAL (0x1701), // idProduct

Getting Started: Building Applications with RL-ARM 127

const U8 USB_ ConfigDescriptor[] =
. // config descriptor
USB_CONFIG_BUS_POWERED // bmAttributes
USB_CONFIG POWER MA (100), // bMaxPower
. // config descriptor continued
USB_INTERFACE DESCRIPTOR TYPE, // bDescriptorType
. // Interface descriptor
USB_ENDPOINT DESCRIPTOR TYPE, // bDescriptorType
- // endpoint descriptor

i

In the configuration descriptor, you must define the device as self-powered,
USB_CONFIG_SELF_POWERED, or bus-powered

USB_CONFIG_BUS POWERED. If the device is bus-powered, you must also
provide its power requirement in mill amperes divided by two. The usbdesc.c
module also contains the string descriptors, which are uploaded to the host for
display when the device first enumerates.

Each character in the string descriptor is represented as a 16-bit Unicode
character and the overall length is the string length plus two.

If you are developing your own device driver for the PC, you can complete the
interface and Endpoint descriptors to match your device configuration. Thiswill
allow the USB device to enumerate and begin communication with your device
driver. However, the RL-USB driver also includes support for standard USB
classes. This allows us to take advantage of the native USB driver within
Windows. The class support within RL-USB will meet the requirements of 80%
- 90% of most small, embedded systems. Thisrouteisfar easier and faster than
developing your own device driver. A vast number of USB-based devices are
using these classes. This ensures that the native class device drivers within
Windows are very stable and will have guaranteed support and maintenance for
the near future.

Class Support

The RL-USB driver currently has support for the Human Interface Device (HID),
Mass Storage (MSC), Audio Device Class (ADC), and the legacy serial portin
the Communications Device Class (CDC). Each of the supported classes can be
enabled in the final section of usbcfg.n. Each USB class has a custom C module
that must be added to your project.

128 Chapter 5. RL-USB Introduction

Human Interface Device

The Human Interface Device (HID) within Windowsis primarily used to support
USB mice and keyboards. The HID driver can also be used to interface any other
I/0 device. For an embedded system, the HID driver can be used to pass control
and configuration information between a host client and the embedded
application.

Oncethe HID support hasbeen [5G s briver ™
enabled in the usbefg.h file, you T R
must add the hiduser.c module to

provide the class support. This

Configuration
RT4_Config.c
usbcfg.h

modul e provides the necessary C] Startup.s - USB Class Support
Ea L USE Driver :

code to handle the USB host chdesc.c __p L& Fuman Interface Device (HID)
control packets associated with Fhuser o Do

the HID class. In addition, you

must also modify the device
descriptors to match the USB
peripheral configuration.

O«

/**

* usbdesc.c
**/

USB_INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType
0x00), // bInterfaceNumber
0x00, // bAlternateSetting
0x01, // bNumEndpoints
USB_DEVICE CLASS HUMAN INTERFACE, // bInterfaceClass
HID_ SUBCLASS_NONE, // bInterfaceSubClass
HID PROTOCOL_NONE, // bInterfaceProtocl

In the Interface descriptor we can enable HID class support. The HID driver has
dedicated protocols to support mice and keyboards. If we do not enable a
specific HID protocol (HID_SUBCLASS NONE, HID_PROTOCOL_NONE), the
USB host requests additional Report descriptors. These Report descriptors allow
you to define a custom protocol for our device.

HID Report Descriptors

The Report descriptor has awell-defined description language, which alows you
to define the structure of data exchanges between the USB host and your device.
The specification for the HID Report descriptor can be downloaded from the
USB Implementers’ Forum, together with an HID descriptor tool, which can be

Getting Started: Building Applications with RL-ARM 129

used to define and test an HID descriptor. Here we examine the basic structure
of the HID report descriptor and make modifications to get useful applications.
The Report descriptor consists of a series of items. Each item begins with an
item TAG that describes the item’ s function, scope, and size.

FI ve mal n tags defl ne { Bit Number l Contents Size

the Report descriptor (bytes)
structure. The first [:

6

5

4

three define the input
data structure, output
data structure, and

configuration features. 5

AnOther two tagS, the Item Type Item Scope: Main, Global, or Local
collection tag and the | 2

end-collection tag, 1
group together the 5
associated input,

ltem Tag Numeric value that indicates item's function

Item Size Number of bytes in one item

output, and feature items as shown in the picture. This N Tt
allows the Windows HID driver to communicate withthe | . —
USB de\/ice. Collection
Input
The simplest devices have one collection that defines the Output
input and output data structures. A more complex device Feature
may consist of several such collections. To construct a I
. . . e ollection
Report descriptor, we can use the file hid.n. Thisfile

contains a series of macros that define the Report
descriptor tags. To understand how these are used, we will examine the Report
descriptor used in the basic HID example, which may be found in the
C:\KEIL\ARM\BOARDS directory.

In this example, the host sends one byte to the device to control the state of eight
LEDs. The device then sends one byte to the host. The first three bits report the
state of three general purpose input/output (GPIO) pins configured as inputs.
The remaining five bits are unused.

HID UsagePageVendor (0x00),
HID Usage (0x01),

The Report descriptor begins by defining the device' s function through a usage
page. The HID specification defines standard application profile pages for
common functions. These are defined in the HID usage table document, which
can be downloaded from the USB Implementers Forum.

130 Chapter 5. RL-USB Introduction

Here, we define a unique vendor profile. The HID Usageis an index pointing to
a subset within the usage page. Once the usage table has been defined, open the
collection of input and output items. Remember, everything in the USB protocol
is host-centric, so data goes IN to the host and OUT from the host to the device.

HID Collection (HID Application),

Here, we define a collection of application data. Other types of collections
include physical (raw datafrom a sensor) and logical data (different types of data
grouped in adefined format). Remember when writing the HID client to stay
consistent at both ends. Next, define the input data structure:

HID Collection (HID Application),

HID LogicalMin (0), // data range 0 - 255

HID LogicalMaxS (0xFF),

HID ReportSize (8), // 8 bits or 1 byte per ‘item’

HID_ ReportCount (1), // one ‘item’ or one byte total sizes

HID Usage (0x01),
HID Input (HID Data | HID Variable | HID Absolute),

In the input item, take advantage of the usage pages to describe data as button
information. HID_ReportSze() defines the number of bitsin each input item.
HID_ReportCount() defines the number of itemsin the report. In this case, we
are defining three bits. This also means that the logical minimum and maximum
will be zero and one. These values allow us to define a range of expected data
values for larger report sizes. The HID input tag defines these three bits as
variable data. The HID_absolute value means that the HID driver will not apply
any scaling values before it presents the data to the client. Next, define the
output item. Again, thisisasingle byte used to control eight LEDs.

HID UsagePage (HID USAGE PAGE LED),
HID Usage (HID USAGE LED GENERIC INDICATOR),

At the beginning of the output item, define the usage page as LED data and
describeit asindicator LEDs. Next, define the item format. HID_ReportSize()
defines the number of bitsin each field. HID_ReportCount() defines the number
of datafields. Again, logical minimum and maximum define the range of
allowed data values. Finally, define this as output HID data, which will vary
over time and no scaling is applied.

HID LogicalMin (0),

HID LogicalMax (1),

HID ReportCount (8),

HID ReportSize(l),

HID Output (HID Data | HID Variable | HID Absolute),

Getting Started: Building Applications with RL-ARM

131

Once the input and output items have been defined, we can compl ete the Report
descriptor by closing the collection.

HID_EndCollection

E

By default, the HID OUT packet is sent to { _
Endpoint 0 as a set_report control packet. B}-Endpoint Events

Endpoint 0 is normally reserved for control .~ Endpeint 0 Event [
information, but it is the way that the driver . -Endpoint 1 Event [

works. The IN packet is sent from Endpoint 1.
The Endpoint events must be enabled for both of these Endpoints.

The IN packet is configured as an interrupt pipe. Its update rate and maximum
packet size are defined in the Endpoint descriptor.

USB_ENDPOINT DESCRIPTOR TYPE, // bDescriptorType
USB_ENDPOINT IN (1), // bEndpointAddress
USB_ENDPOINT TYPE INTERRUPT, // bmAttributes
WBVAL (0x0004) , // wMaxPacketSize
0x20), // 32ms // bInterval

Once the descriptor configuration is compl ete, the application code can start the
RL-USB driver running.

__task void USB Start (void) {

USB_Init (); // USB Initialization
USB_Connect (__ TRUE) ; // USB Connect
os_tsk delete self (); // Terminate Task

}

When the driver has been started, any task can exchange data with the USB host.

The USB host will request data packets on Endpoint 1 at the rate you have
defined in the Endpoint descriptor. In usbuser.c the Endpoint 1 handler is
responsible for updating the Endpoint 1buffer with the current status of the
button data.

void USB _EndPointl (DWORD event) {

switch (event) ({
case USB_EVT_ IN:
GetInReport () ;
USB_WriteEP (0x81, &InReport, sizeof (InReport)) ;
break;
}
}

132 Chapter 5. RL-USB Introduction

The button datais held in asingle byte, InReport. Thisvariableis updated by the
GetlnReport() function, is a user function placed in main.c. Y our application
must update the InReport variable, which is defined in the main.c module. In this
example, the InReport consists of a single byte, which holds the current switch
values.

if ((FIO2PIN & PBINT) == 0) { // Check if PBINT is pressed
InReport = 0x01;

}

else {
InReport = 0x00;

}

Data packets sent out from the USB host are handled by a similar mechanism.
Data sent out from the host is sent on Endpoint 0. This Endpoint is normally
reserved for control information, so, by default, the OUT datais transferred in
set_report control sequences. The Endpoint O handler receives the set_report
sequence. Thistriggersthe HID_set_report() function in the hiduser.c module,
which reads the data and placesit into the variable OutReport.

BOOL HID SetReport (void) {
switch (SetupPacket.wValue.WB.H) {
case HID_REPORT OUTPUT:
OutReport = EPOBuf [0];

SetOutReport () ;
break;

-
}

Like the GetInReport() function, SetOutReport() is stored in demo.c and must
contain the necessary code to pass the new datato your application.

void SetOutReport (void) {

FIO2SET = OutReport;

}

Exercise: HID project

This project uses the HID class driver to exchange single bytes of data with a
PC.

Getting Started: Building Applications with RL-ARM 133

HID Client

Once the USB firmware has been configured on the microcontroller, it will
enumerate with the host. It can then begin to transfer datato and from the
Windows HID driver. The next task isto access the relevant HID driver from an
application program running on the host. Accessto the HID driver is made
through Win32 API calls. This can be complicated if you are not used to host
programming. However, the source code for a complete HID client application is
|located in C:\KEIL\VARMWUTILITIES\HID_CLIENT. The client HID can be rebuilt with
Visual C++. You will aso need the Microsoft Driver Development Kit, which
can be downloaded from the Microsoft web site. To make life easy, all of the
necessary Win32 API calls have been placed in wrapper functionsin the HiD.c
module. This allows them to be easily reused to build a new custom client.

When a new device is attached to the USB network, it enters the enumeration
process with the USB host, identifying itself asan HID device. On ahost, this
causes the Windows operating system to load a new instance of its HID driver.
The HID driver is created with anew Globally Unique Identifier (GUID). Thisis
a 128-bit number identifying the type of object and its access control. When a
HID client is started on the host, it can examine the current Windows system for
running HID drivers.

HID Init ();
int HID FindDevices ();

The first two functions are used to initialize the HID client and clear the list of
attached devices. Next, the HID_FindDevices() function builds alist of currently
connected HID devices and their capabilities. The results of thisfunction call are
held in a set of structures. By examining the data held in these structures, you
can locate your device from its VendorI D and ProductI D or other unique feature.

BOOL HID GetName (int num, char *buf, int sz);

For amore general purpose, the product strings can be read by calling the
HID_GetName() function. The product string data can be displayed in the client,
allowing the user to make the selection.

BOOL HID Open (int num) ;

Once an HID device has been selected, the HID_Open() function is used to
connect the client to the HID driver. Thisis done using the Win32 CreateFile()
API call.

134 Chapter 5. RL-USB Introduction

Once we have located the driver and opened the connection, two further read and
write functions allow us to exchange data with the attached HID device.

BOOL HID Read (BYTE *buf, DWORD sz, DWORD *cnt) ;
BOOL HID Write (BYTE *buf, DWORD sz, DWORD *cnt) ;
void HID Close ();

Finally we can end our connection with the HID driver by calling the
HID_Close() function.

Enlarging the IN & OUT Endpoint Packet
Sizes

In apractical application, it will be necessary to transfer more than a single byte
of data between the USB host and device. Y ou can change the Report descriptor
to transfer the maximum packet size of 64 bytesin both directions, as shown
below.

#define INREPORT SIZE 64

#define OUTREPORT SIZE 64

BYTE InReport [INREPORT SIZE]; // HID Input Report

BYTE OutReport [OUTREPORT SIZE] ; // HID Output Report
const BYTE HID ReportDescriptor[] = { // HID Report Descriptor

HID UsagePageVendor (0x00),

HID Usage (0x01),

HID Collection (HID Application),

HID LogicalMin (0),

HID LogicalMaxS (O0xFF),

HID ReportSize (8), // bits
HID ReportCount (INREPORT SIZE), // Bytes
HID Usage (0x01),

HID Input (HID Data | HID Variable | HID Absolute),
HID ReportCount (OUTREPORT SIZE), // Bytes
HID Usage (0x01),

HID Output (HID Data | HID Variable | HID Absolute),
HID_EndCollection

E

Thisisamore general Report descriptor, which can be modified easily to
accommodate any custom IN and OUT packet size. We can also move the OUT
data pipe from Endpoint O to the Endpoint 1 OUT by defining an additional
interrupt Endpoint descriptor, as shown below.

Getting Started: Building Applications with RL-ARM 135

// Endpoint, HID Interrupt Out

USB_ENDPOINT DESC SIZE,

USB_ENDPOINT DESCRIPTOR TYPE,

USB_ENDPOINT OUT (1),
USB_ENDPOINT TYPE INTERRUPT,
WBVAL (0x0040) ,

// bLength
// bDescriptorType
// bEndpointAddress
// bmAttributes
// wMaxPacketSize= 64

0x20,

The Endpoint descriptor is added beneath the existing Endpoint 1 descriptor. We
must also make sure that the overall descriptor size reflects the addition of a new
Endpoint. Thisis done within the configuration descriptor as shown below.

USB_CONFIGURATION DESC SIZE +
USB_INTERFACE DESC SIZE +
HID DESC SIZE +
USB_ENDPOINT DESC SIZE +
USB_ENDPOINT DESC SIZE

// EP1 IN
// New EP1 OUT descriptor

Y ou must a so adjust the number of Endpoints defined in the interface descriptor.

USB_INTERFACE DESCRIPTOR TYPE, // bDescriptorType

0x00), // bInterfaceNumber
0x00, // bAlternateSetting
0x02, // bNumEndpoints

Once the additional Endpoint is defined, the HID driver will stop sending data as
set_report control transfers on Endpoint 0. It will then begin sending OUT
packets on Endpoint 1. Now we must add code to receive the new OUT packets
on Endpoint 1. Remember that the physical Endpoints are unidirectional, but
they are grouped as logical pairs. Each logical Endpoint has a physical IN
Endpoint and a physical OUT Endpoint.

void USB_EndPointl (DWORD event) {

switch (event) ({
case USB_EVT IN:
GetInReport () ;
USB_WriteEP (0x81, &InReport, sizeof (InReport)) ;
break;
case USB_EVT OUT:
USB_ReadEP (0x01, &OutReport) ;
SetOutReport () ;
break;
1
1

This now gives 64 byte IN and OUT packets, which are handled symmetrically
on logical Endpoint 1. The SetOutReport() and GetlnReport() functions can now
be modified to read and write the application data into the new InReport[] and
OutReport[] arrays.

136 Chapter 5. RL-USB Introduction

Within the client, we can use the existing code and just need to change the size of
the IN and OUT reports.

BYTE OutReport [64];
BYTE InReport [65];

if (!HID Write (OutReport, sizeof (OutReport), &cnt)) {
OnError () ;
return;

}

if (!HID Read (InReport, sizeof (InReport), &cnt)) {
OnError () ;
return;

}

The InReport[] array should be set to 65 bytes, not 64, as the report descriptor

adds a byte to the beginning of the packet. Hence, your application data will start
from InReport[1].

Exercise: Extended HID

This example extends the HID example by enlarging the IN and OUT packetsto
64 bytes and moving the OUT pipe from Endpoint Zero to Endpoint One.

Mass Storage

The RL-USB driver also supports the Mass Storage class that connects an
external storage device to the USB host. The USB Mass Storage Classisa
complex protocol that is difficult to implement. The RL-USB driver provides all
the necessary class support to link a host file system to the RL-Flash file system
viaUSB and resides in the mscuser.c module. This simply needsto be added to a
project, which has already been configured with the RL-Flash file system.

The Mass Storage Class is

Eﬁ Mass Storage Class

. . =W ' E|USB Class Support v

enabled in the usbcfg.h flle, along E a.ur:qz::!is B-Human Interface Device (HID) [

i i i Canfiguration Fi [Mass Starage I

with Endpoint 2. Encpont2 et Sl it :
will provide symmetric an (8 startups
. LISE Driver

OUT EndeI nt bUffeI'S tO al IOW ushuser.c E| El_wdpoint Ewvents
bidirectional data transfer e Sonnaten i
between the USB hOSt and the E| & UuSstgFSCIC -Endpoint 2 Event 4
. ass)
dE'\/I ce. In usbdesc.c, the USB [[£] mscuser.c . i Endpoint 3 Bvent r

interface descriptor defines the

device as being a member of the Mass Storage Class.

Getting Started: Building Applications with RL-ARM 137

/* __
/ Mass storage class interface descriptor
__ */
USB_INTERFACE DESCRIPTOR TYPE, // bDescriptorType
0x00), // bInterfaceNumber
0x00), // bAlternateSetting
0x02, // bNumEndpoints
USB_DEVICE CLASS_ STORAGE, // bInterfaceClass
MSC SUBCLASS SCSI, // bInterfaceSubClass
MSC_PROTOCOL_ BULK ONLY, // bInterfaceProtocol
0x62, // iInterface

The Mass Storage Class uses pipes, which have been configured to use bulk
transfer. Although the bulk transfer type has the lowest priority of the different
pipe categories, it does have the advantage of being able to make multiple
transfers within a USB frame (if the bandwidth is available). Following interface
descriptors are two Endpoint descriptors, which define the IN and OUT
Endpoints.

/* __
/ Mass storage Endpoint descriptors
__ */
// Bulk In Endpoint
USB_ENDPOINT DESC SIZE, // bLength
USB_ENDPOINT DESCRIPTOR TYPE, // bDescriptorType
USB_ENDPOINT IN(2), // bEndpointAddress
USB_ENDPOINT TYPE BULK, // bmAttributes
WBVAL (0x0040) , // wMaxPacketSize
0, // bInterval

// Bulk Out Endpoint

USB_ENDPOINT DESC_SIZE, // bLength
USB_ENDPOINT DESCRIPTOR TYPE, // bDescriptorType
USB_ENDPOINT OUT(2), // bEndpointAddress
USB_ENDPOINT TYPE BULK, // bmAttributes
WBVAL (0x0040) , // wMaxPacketSize
0, // bInterval

// Terminator

The mscuser.c file then provides the application interface to the RL-Flash file
system. Once the Mass Storage Class has been added to your application, it will
directly interface to the RL-Flash file system and no further development work is
necessary to enableit.

However, when your deviceis connected, the host mass storage driver will
take control of the storage volume, and the embedded file system must not
be used toread or write data to fileslocated in the storage volume. You
must include code to prevent the embedded firmwar e writing to files, when
your deviceis connected to the host.

138

Chapter 5. RL-USB Introduction

USB_Init () ;
while (1) {
if (WakeUp) {

WakeUp = _ FALSE;
USB_Connect (_FALSE) ;
sd_main () ;

else
if (mmc_init ()) {

mmc_read config (&mmcfg) ;
MSC_BlockCount = mmcfg.blocknr;
USB_Connect (__ TRUE) ;
}
while (!WakeUp) ;
1
1

void sd main (void) ({

init_card ();
while (1) {
if (WakeUp) {
WakeUp = _ FALSE;
return;

}

// add application code here
// Set WakeUp to enable USB MSC
}
}

/!
/!

/!
/!
/!

/!
!/

USB Disconnect
Call application code

Init MSC driver
read card config
USB Connect

wait until aplication
wants file system

Exercise: Mass Sorage Example

This example demonstrates the Mass Storage Class and allows files to be
transferred from the PC to the RL-Flash drive using the Windows Explorer.

Audio Class

The RL-USB driver aso supports an Audio Class Driver. Thisallowsusto
stream audio data between the USB host and the device as | sochronous packets.
Like the Mass Storage and HID classes, the Audio Class communicates with a
standard driver within Windows. Application programs running on the host,
which requires an audio input and output, use thisdriver. The RL-USB driver
can be configured to support the Audio Class by adding the adcuser.c class-file to

an RL-USB driver project.

Getting Started: Building Applications with RL-ARM 139

In usbcfg.h, the AUdIO CI ass -- USE Configuration
support has been enabled, and P — e e
. . - Device EVents
EndeI nt 3isused for the E| S Source Files s
streaming audio data. Asinthe oy D rane 3 U Core Events
HI D I f aI| n usbifah [=1- USE Class Support Ird
Class con |gur Ol] [Human Interface Device (HID) I
information is sent in the form [Mass Storage r
set_request and get_request 5 Audlo pevice v
control transfers on Endpoint O. _
The Device Descriptors are held = E“d'::t e
. . H - EMJPOoInt NEn!
in usbdesc.c. The descriptors T Endpoint 1 Event ,'Z
define three interfaces. an Audio -~ Endpoink 2 Event r
i . Endpoint 3 Event Icd

Class Control Interface (ADC
CIF) and two Audio Class Streaming Interfaces (ADC Sl F) One streaming
interface is configured as an output and one as an input.

A typical application could use the OUT isochronous pipe to drive a speaker via
aDigital-to-Analog Converter (DAC). Intheusbuser.c file, the Endpoint 3
callback handler is used to receive the data packet. It transfers datato a buffer
using the CPU or DMA unit, if oneisavailable. The Audio Classdriver in RL-
USB installs a Fast Interrupt Request (FIQ) interrupt. Thisis used to write the
datato the DAC and reproduce the audio stream. The Audio Class aso supports
feature requests, which are sent on Endpoint 0. These are used to pass control
information from the host application to the audio device. 1n the speaker
demonstration, the Audio Control Interface is used to control the volume level
and mute function.

Exercise: Audio Class Example

This example demonstrates a speaker application using the Audio Class.

Composite Device

Aswe have seen in the previous sections, the RL-USB driver supports three of
the most useful USB classes. In some applications, it may be necessary to
combine the functionality of two or more classes. For example, you may wish
your device to appear as a Mass Storage Device so that you can easily transfer
large amounts of data. 1t may aso be useful for the device to appear asaHID
device, in order to send small amounts of control and configuration data. RL-
USB is designed so that each of the supported classes can be combined into one
application to make a composite device.

140 Chapter 5. RL-USB Introduction

To make a composite device, it is necessary to first create a project with the core
USB modules. Then we need to add the dedicated class support modules. The
class support and required Endpoints must be enabled in usbcfg.h.

Next, you must add together the {23 Composite HID and tsC

E| a Source Files

descriptors for each class. This e main.c Endpaint Events

. . Endpaink 0 Event
will create three full Interface E a CDHF'gEf;“Uh“ Files Endpink 1 Event
descriptors and their associated Strton.s - Endooin: 2 Event
Endpoint descriptors. In the = E‘ RL USE Driver - Endpont 3 Event

Configuration descriptor, you
must increase the total number of
interfaces. Each interface must
have a unique number. Finaly,
you must add the Endpoint code
for each enabled Endpoint and service these from your application.

-USE Class Support
f|- Human Interface Device (HID)

A<« TR

E
[+~ Mass Storage
- Audio Device

Exercise: Composite Example

This example demonstrates a composite device, which acts as both a HID device
and a Mass Storage Classin one project.

Compliance Testing

Before releasing your USB device, it is necessary to ensure that it fully meets the
USB specification. A suite of USB compliance tests can be downloaded from the
USB Implementers’ Forum. This softwareis called the USB command verifier.
It automatically tests your device' s response to the core USB setup commands
and the appropriate device class commands. It is also recommended that you
perform as much plug and play testing with different hosts, hubs, and operating
systems as you would expect to find in thefield. Y ou can download the USB
verifier software from www.usb.org/devel opersitools.

Getting Started: Building Applications with RL-ARM 141

Chapter 6. RL-CAN Introduction

The CAN (Controller Area Network) protocol was originally devel oped for
networking in the automotive sector. The aim wasto replace the wiring loomin
passenger vehicles. CAN ischaracterized by relatively fast data transfer, good
error detection, good recovery and low electromagnetic interference (EMI).
Unlike Ethernet, its arbitration method can guarantee deterministic delivery of
message packets within defined system latency. It has been widely adopted into
many industries as a de-facto standard for distributed control systems, asitisan
ideal method of networking small, embedded systems. This chapter examines
the RL-CAN driver, which allows you to rapidly and easily build a CAN network
with many different manufacturers CAN controller peripherals.

The CAN Protocol — Key Concepts

Inthe ISO 7-layer model, the Abplication
CAN protocol covers the layer e
. i . : resentation
two, "DataLink Layer”. This —_—
1 H ession
involves forming the message Not Used
packet, error containment, Tianspors
acknowledgement, and Network
arbltratl on. Transfer Layer
Fault Confinement
Object Layer

- H Datalink Message Prioritizer
CAN dOGS nOt I'Igldly defl ne s Ac r‘.i:p‘ujnl:i: F\Ir::rllig
layer one “Physical Layer”. This
means, that CAN messages may
USe man dlfferent h Slcal Bit Representation

y p y Transfer Rate

mediums. However, the most Physical Signal Level and Timing
common phySl Cal Iayer iS a Transmission Medium

twisted pair, and standard line
drivers are available for it. InaCAN network, the other layersin the ISO model
are effectively empty, and your application code will communicate directly to the
datalink layer.

The application code addresses the registers of the CAN peripheral directly. In
effect, the CAN peripheral can be used as a glorified UART, without the need for
an expensive and complex protocol stack. Since CAN isalso used in Industrial
Automation, there are anumber of software standards defining how the CAN
messages are used. Thisis necessary in order to transfer data between different
manufacturers’ equipment.

142 Chapter 6. RL-CAN Introduction

The two most popular of these application layer standards are CANopen and
DeviceNet. The sole purpose of these standards is to provide interoperability
between different Original Equipment Manufacturers' (OEM) equipment. If you
are devel oping your own closed system, then you do not need these application
layer protocols. You are free to implement your own proprietary protocol, which
many developers do.

CAN Node Design

A typical CAN nodeisshownin
the picture. Each node consists
of amicrocontroller and a CAN
controller. The CAN controller
may be fabricated on the same CAN Controller
silicon as the micracontroller.
Alternatively, it may be a

Microcontroller

Tx0 Tx1 Rx0 Rx1

standalone controller in a CAN Transceiver
separate chip from the

microcontroller. The CAN CAINL CAINH

controller is interfaced to the Twisted pair with 1200hm termination resistors
twisted pairbyaCAN g

Transceiver. Thetwisted pair is
terminated at either endby a120 v

Ohm resistor. The most
common mistake with afirst
CAN network isto forget the
terminating resistors and then
nothing works.

35 —f

25 =
VEanL

The CAN controller has separate
transmit and receive paths to and
from the Physical Layer device.
Thisis an important feature of
the CAN node. Therefore, asthe
node iswriting to the bus, it is t
also listening back. Thisisthe basis of the message arbitration and it also
contributes to the error detection. Thetwo logic levels, which are written on to
the twisted pair, are defined as follows; alogic oneis represented by busidle,
with both wires held half way between 0 and V. A logic zero is represented by
both wires being differentially driven.

Getting Started: Building Applications with RL-ARM

143

On the CAN bus, logic zero is represented by a maximum voltage difference
called “Dominant.” Logic one (1) isrepresented by abusidle state called
“Recessive’. A dominant bit will overwrite arecessive bit. Therefore, if ten
nodes write recessive and one writes dominant, then each node will read back a
dominant bit. The CAN bus can achieve bit rates of up to a maximum of IMb/s.
Typically, this can be achieved over 40 meters of cable. Longer cable lengths
can be achieved by reducing the bit rate. In practice, you can get at least 1,500
meters with the standard drivers at 10 Kbit/s.

CAN Message Frames

The CAN bus has two message objects, which may be generated by the
application software. These are the message frame and the remote request frame.
The message frame is used to transfer data around the network. The message
frameis shown below.

I Arbitration Field Control Field | DATA Field Error control and end of frame

29 Bit Identifier 0 - 8 Bytes Data 15 bit CRC

Remote Transmit Request

Data Length Code

The CAN controller forms the message frame. The application software provides
the data bytes, the message identifier, and the RTR bit.

The message frame starts with a dominant bit to mark the start of frame. Nextis
the message identifier, which may be up to 29 bitslong. The message identifier
is used to label the data being sent in the message frame. CAN isa
producer/consumer protocol or broadcast protocol. A given message is produced
from one unique node and then may be consumed by any number of nodes on the
network simultaneously. Itisalso possible to do point-to-point communication
by making only one node interested in a given identifier. Then a message can be
sent from the producer node to one given consumer node on the network. Inthe
message frame, the RTR hit is always set to zero (this field will be discussed
shortly). The Data Length Code (DLC) field contains an integer between zero
and eight, and indicates the number of data bytes being sent in this message
frame. Y ou can send a maximum of 8 bytes in the message payload. Itisaso
possible to truncate the message frame to save bandwidth on the CAN bus. After
the 8 bytes of data, there is a 15-bit Cyclic Redundancy Check (CRC). This

144 Chapter 6. RL-CAN Introduction

provides error detection and correction from the start of frame up to the
beginning of the CRC field.

After the CRC, there is an acknowledge slot. The transmitting node expects the
receiving nodes to insert an acknowledgement in this slot within the transmitting
CAN frame. In practice, the transmitter sends a recessive bit and any node,
which has received the CAN message up to this point, will assert a dominant bit
on the bus, thus generating the acknowledgement. This means, that the
transmitter will be satisfied if just one node acknowledges its message, or if 100
nodes generate the acknowledgement. This needs to be taken into account when
developing your application layer. Care must be taken to treat the acknowledge
as aweak acknowledge, rather than assuming that it is confirmation that the
message has reached all its destination nodes. After the acknowledge slot, there
is an end-of-frame message delimiter.

The Remote Transmit Request (RTR) frame is used to request message packets
from the network as a master/dave transaction. Each CAN may also transmit a

|dentifier

remote transmit request frame RTR. The purpose of thisframeisto request a
specific message frame from the network. The structure of the RTR frameisthe
same as the message frame except that it does not have a data field.

A node can use an RTR frame to

N
request a specific message frame Remote Request E
from the CAN network. To do ID=23 RTR=1 T
this, the requesting node sends Node EEE— W
an RTR frame. The ldentifier s — e—— Data Packet 0
set to the address of the message ID=23 RTR=0 R
frame it wants to receive and the -— K

N —

RTR bit is set to one. When the
RTR frame is transmitted, it is broadcasted onto the network and received by all
the network nodes. Each node will see it as aremote request and will examine
the message identifier. The node that normally transmits that message identifier
will then reply with a standard message frame (RTR bit = 0), which includes the
requested message identifier and its current data.

Getting Started: Building Applications with RL-ARM

145

As previously mentioned, the
CAN message identifier can be
up to 29 bitslong. There aretwo
standards of CAN protocol, the
only difference being the length
of the message identifier.

It is possible to mix the two
protocol standards on the same
bus, but you must not send a 29-
bit message to a 2.0A device.

CAN Bus Arbitration

If amessage is scheduled to be transmitted on to the bus and the busisidle, it
will be transmitted and may be picked up by any interested node. If amessageis
scheduled and the busiis active, it will have to wait until the busisidle, before it
can be transmitted. If several messages are scheduled while the busis active,
they will start transmission simultaneously once the bus becomesidle, being
synchronized by the start of frame bit. When this happens, the CAN bus
arbitration will take place to determine which message winsthe busand is

transmitted.
Node X
Node A 1‘
Node B 1
Node C T
-a— = Arbitration phase of message frame

= Remainder of message frame

f = Schedule Message Tx

Node A —
Node B

Node C

Node B loses

Node C loses

Frame with Frame with
11 bit ID 29 bit ID
V2.0B Active /|
CAN Module THRIEOR ROk
4
V2.0 Passive
Sud i Tx/Rx OK Ignorad
4 <
V2.0A CAN Tx/Rx OK Bus ERROR
Module

e e ———

146 Chapter 6. RL-CAN Introduction

CAN arbitrates its messages by a method called “non-destructive bit-wise
arbitration”. In the diagram, three messages are pending transmission. Once the
busisidle and the messages are synchronized by the start bit, they will start to
write their identifiers on to the bus. For the first two bits, all three messages
write the same logic and, hence, read back the same logic, so each node
continues transmission. However, on the third bit, nodes A and C write dominant
bits, and node B writes recessive. At this point, node B wrote recessive but reads
back dominant. In thiscase, it will back off the bus and start listening.

Nodes A and C will continue transmission until node C writes recessive and node
A writes dominant. Now, node C stops transmission and starts listening. Node
A has won the bus and will send its message. Once node A has finished, the
nodes B and C will transmit. Node C will win and send its message. Findly,
node B will send its message. If node A is scheduled again, it will win the bus
even though the node B and C messages have been waiting. In practice, the
CAN bus will transmit the message with the lowest value identifier first.

RL-CAN Driver

As mentioned above, CAN has been widely adopted for distributed control
within embedded systems. Today, just about all microcontroller families include
avariant, or variants, with a CAN controller peripheral. However, each
manufacturer’s CAN controller has a different set of special function registers
and features. The RL-ARM library includes a dedicated CAN driver, which
provides a standard programming API for all supported microcontrollers. The
CAN driver uses RTX message queues to buffer data before it is transmitted or
received. The RL-CAN driver provides a quick and easy way to implement a
CAN network. The RL-CAN driver also provides code portability, in case you
need migrating code to another microcontroller.

First Project

Unlike the other middleware components within the RL-ARM library, the RL-
CAN driver must be used with RTX.

{5-§24 LPC2300 Flash
H urce Files

The RL-CAN driver consists of

two C modules and associated A s o
headel’ fl |eS The fl I'St mOdUl e, & d FITCD—_:bit'C E---Usa CAN Controller 2 cd
nrguration

?---Number of transmit objects Far contrallers 20

;] LPCZ300.5 i
- Mumber of receive objects for contrallers 20

- RTH_Corfig.c

RTX_CAN.c, iSageneric layer
driver, which provides the high

Getting Started: Building Applications with RL-ARM 147

level APl and message buffering. The second file, cAN_hw.c, provides the low
level code for a specific CAN peripheral. Both modules have an includefile,
CAN_cfg.h, which is used to provide custom settings. Like all the other
configuration optionsin RL-ARM, cAN_cfg.h isatemplate file, whichis
graphicaly displayed in the pVision Configuration Wizard. Each supported
microcontroller has its own version of RTX_CAN.c, CAN_hw.c, and cAN_cfg.h file.
Therefore, you must take care to add the correct files to your project. In each of
your program modules, you must include the RTx_caN.h header file that defines
the CAN driver functions.

The configuration options in caN_cfg.h vary depending on the microcontroller
being used. Asaminimum, you will need to define the number of transmit and
receive objects. Thisis, in effect, the size of the transmit and receive queue
available to the CAN controller. 1f the microcontroller has more than one CAN
peripheral, the can_cfg.h file will have options to enable the controllers you wish
to use. Finaly, depending on the clock structure of the microcontroller, you may
need to define the input clock value to the CAN controller. Thisis necessary for
the API functions to accurately calculate the CAN bit timing rate.

CAN Driver API

The CAN driver API consists of eight functions as shown below.

Function Purpose

CAN_start Places the CAN controller in operating mode and starts CAN bus communication
CAN_init Initliises the CAN controller and sets the bit rate

CAN_rx_object Configures a CAN message receive object

CAN_receive Receives a CAN message frame

CAN_set Configures a message frame to send in response to a remote frame
CAN_tx_abject Configures the CAN message transmit object

CAN_send Transmits a message frame

CAN_request Transmits a CAN remote frame

The first three API functions are used to prepare a CAN controller to send and
receive messages on the network.

CAN_init (1, 500000) ;
CAN rx object (1, 2, 33, STANDARD FORMAT) ;
CAN start (1);

148 Chapter 6. RL-CAN Introduction

CANL_init() defines the bit rate of agiven CAN controller. The CAN driver
supports microcontrollers with multiple CAN controllers. Each CAN controller
isreferred to by anumber that starts from one. These numbers map directly onto
the physical CAN controllers on the microcontroller in ascending order. Here,
CAN controller 1 runs at 500K bit/sec. Next, the CAN_rx_object() function is
used to define which message identifiers will be received into the selected CAN
controller. In the above example, we have selected CAN controller 1 to receive
message |ID 33. The second parameter in the CAN_rx_object() function refersto
the message channel. We will look at thisin the object buffer section later in this
chapter. You may also define whether the message ID is 11-bit (standard) or 29-
bit (extended) in length. The CAN controller will only receive messages that
have been defined with the CAN_rx_object() function. Once we have defined all
of the messages that we want to receive, the CAN controller must be placed in its
running mode by calling the CAN_start() function.

Basic Transmit and Receive

Once the CAN controller has entered running mode it is possible to send and
receive messages to and from the CAN network. The CAN message format is
held in a structure defined in can_cfg.h.

typedef struct

U32 id; // message identifier
U8 data [8]; // Message data payload
U8 len; // Number of bytes in the message payload
U8 ch; // CAN controller channel
U8 format; // Standard (11-bit) ID or extended (29-bit) ID
U8 type; // Data frame or remote request frame
} CAN msg;

To send a message define the CAN message structure. This structure reflects the
fields of the CAN message frame. In the example below, a message frame
msg_send is defined with an identifier of 33, followed by eight bytes of user-
defined data. The datalength code is set to one, so that only the first data byte
will be transmitted. The message will be sent through channel 1. The frame will
start with an 11-bit identifier followed by a message frame.

CAN msg msg send = {
33,
{ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
1,
2,
STANDARD FORMAT,
DATA FRAME

Getting Started: Building Applications with RL-ARM 149

Then we call the CAN send function:

CAN_send (1, &msg_send, 0xO0FO00) ;

Thiswill place the CAN message into the message queue. The message queue is
aFirst-In-First-Out (FIFO) buffer, so the messages are guaranteed to be sent in
order. The “number of transmit objects’ in can_cfg.h defines the depth of the
FIFO buffer in message frames. If the FIFO becomes full, the CAN send
function will wait for its timeout period for a message slot to become free. As
with other RTX functions, thiswill cause the task to enter the WAITING state, so
that the next task in the READY state enter the RUN state.

if (CAN receive (1, &msg rece, O0x00FF) == CAN OK) {
Rx _val = msg_rece.data [0];
}

The CAN Receive function operatesin asimilar fashion. As messages are
received, they are placed into the receive-object FIFO. The CAN Receive
function is then used to access message framesin the FIFO. If the FIFO is
empty, the timeout period specifies the number of RTX clock ticks

CAN _receive() will wait for amessage to arrive.

Exercise: First Project

Thefirst RL-CAN driver project guides you through setting up the RL-CAN
driver to transmit and receive CAN messages.

Remote Request

The RL-CAN driver may also send and respond to remote request frames. First,
you must define the message frame as a remote request.

CAN msg msg_rmt = {
21,
{ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
1,
2,
STANDARD FORMAT,
REMOTE_FRAME

) 5

When this message is sent, the message frame contains no data and the remote
request bit is set. When this frame is sent, every node on the network will
receiveit. Each node will inspect the message identifier.

150 Chapter 6. RL-CAN Introduction

The node that sends this message will immediately reply to the remote frame
with a message frame matching the identifier and its current data.

When sending the remote frame you must be careful with the DLC setting.
Although the remote frame does not contain any data, the DLC should not be set
to zero. Rather, it should be set to the length of the data packet in the reply
message frame.

Once the remote frame has been defined, we can use it to request a message
frame from the network.

CAN_request (1,&msg_rmt, OxFFFF) ;

All nodes on the network will receive the remote frame. The node that sends
message frames for the requested ID will then send areply data frame with the
requested ID and its current data. The RL_CAN driver contains a CAN_set()
function, which allows a CAN node to respond automatically to a remote request.
First, you must define a CAN message frame in the same way as for the
CAN_send() function.

CAN msg msg_for remote = {
21,
{ox01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
1,
2,
STANDARD_FORMAT,
DATA FRAME

bi
The message frame is then passed to the CAN_set() function.

CAN_set (1, &msg_for_remote, O0x00ff);

This message frame will now be transmitted when a remote request with a
matching ID is received.

Exercise: Remote Request

This exercise configures a message object to send a remote frame and prepares
another to reply.

Getting Started: Building Applications with RL-ARM 151

Object Buffers

The internal architecture of a CAN controller comesin two varieties: Basic CAN
and Full CAN. Basic CAN has asingle transmit and receive buffer. Full CAN
has multiple transmit and receive buffers.

Full CAN supports a more [v] [v]
sophisticated use of the CAN

protocol. It also allows higher |W\JTI—
throughput of CAN messages. T

In our first example, we used |

the CAN_rx_object() functionto [0+ —
define the messages to be TX BUFFER BUFFER (n)
received into the CAN ——— o

controller. Weignored the
channel parameter. In afull

| |
LY | _va_ |
CAN controller, the channel
parameter definesin which
receive buffer the messagewill <<)E)’\X X)L X XX >

be stored. This provides both buffering in hardware and a more efficient access
to the new data. Thefinal API call inthe RL_CAN driver alows usto use the
same mechanism for transmitting messages.

CAN_tx object (1, 2, 11, STANDARD FORMAT) ;

Here, the channel number will specify which transmit buffer is used to hold a
given message frame. This allows several messages to be scheduled
simultaneously and ensures that a high priority message will be sent immediately.

152 Glossary

Glossary

AJAX
Asynchronous JavaScript and XML
A group of client side technologies designed to create rich internet
applications.

ARP
Address Resol ution Protocol
OnaLAN, ARPisused to discover a stations MAC address when only
its IP address is known.

ADC
Audio Device Class
A USB class designed to allow bi directional transfer of Audio data
between A USB host and device.

CAN
Controller Area Network
A bus standard designed specifically for automotive applications.
Meanwhile also used in other industries. It allows microcontrollers and
devices to communicate with each other without a host computer.

CGl
Common Gateway Interface
A standard protocol for interfacing application software to an internet
service typically aHTTP server.

Composite
A USB device that supports two or more device classes.

Co-operative
A form of operating system scheduling. Each task must de schedule itself
to allow other tasks to run.

CRC
Cyclic Redundancy Check
A type of function to detect accidental aternation of data during storage
or transmission.

Getting Started: Building Applications with RL-ARM

153

Datagram

DHCP

A networking message packet that does not provide any form of delivery
acknowledgment.

Dynamic Host Control Protocol
A TCP\IP networking protocol that allows a station to obtain
configuration information.

DLC
Data Length Code
Indicates how many data bytes are in a CAN message packet. CAN
messages are of variable length. The DLC can be from O to 8 bytes long.
DNS
Domain Name System
A Hierarchical naming system for the internet that translates names,
such as www.example.com to an | P address such as
207.183.123.442.
Ethernet
A frame based computer networking technology for
Local Area Networks.
FIFO

First In, First Out

Expresses how data are organized and manipulated relative to time and
prioritization. It describes the working principle of aqueue. What
comesin first is handled first, what comes in next waits until thefirst is
finished, etc.

Flash File System

FTP

A computer file system designed for small solid-state devices, typically
NAND FLASH memory.

File Transfer Protocol
An internet protocol designed to transfer files between aclient and a
remote internet station.

154 Glossary

HID
Human Interface Device
A USB device class that supports peripherals, which provide input and
output to humans. Typically, these are mouse and keyboards.
HTTP
Hyper Text Transfer Protocol
A TCP\IP application level protocol for distributed “hypertext”.
A collection of inter-linked resources that forms the world wide web.
Hub
A USB Hub connectsto asingle USB port and provides additional
connection ports for USB devices or further hubs.
ICMP
Internet Control Message Protocol
A TCP\IP protocol used to provide error, diagnostic and routing
information between TCP\IP stations.
IP
Internet Protocol
The primary protocol in the TCP\IP networking suite. 1P delivers
protocol datagrams between source and destination stations based
solely on their addresses.
Mailbox
A region of memory that is used to queue formatted messages passed
between operating system tasks.
MAC
Media Access Control
A unique identifier assigned to the Ethernet network adapter.
M SD
Mass Storage Device
A USB device class that supports interfacing of an external storage
device to aUSB host.
Mutex

A form of binary semaphore that is used to ensure exclusive access
to acommon resource or critical section of code in areal-time
operating system.

Getting Started: Building Applications with RL-ARM

155

Port
A communication endpoint with an internet station. Used by TCP
and UDP to pass a data payload to a specific application protocol.
PPP
Point-to-Point Protocol
Aninternet protocol designed to provide a TCP\IP connection over
aseria or modem link.
Pre-Emptive
A form of priority based scheduling in a Real-Time Operating System.
The highest priority task ready to run will be scheduled until it blocks
or ahigher priority task is ready to run.
TCP
Transmission Control Protocol
A primary protocol in the TCP\IP networking suite. TCP provides
areliable ordered delivery of data from one TCP\IP station to another.
UDP
User Datagram Protocol
A primary protocol in the TCP\IP networking suite. UPD provides
a simple transmission model without handshaking. UDP provides
an ‘unreliable’ service; the application software must provide error
checking and handshaking if necessary.
RTR
Remote Transmission Request
Also part of the CAN message frame to differentiate a data frame from a
remote frame. The dominant RTR bit (set to 0) indicates a data frame;
where as arecessive RTR-bit (set to 1) indicates a remote request frame.
Round Robin
A form of scheduling in areal-time operating system where each task is
allotted a fixed amount of run time on the CPU.
Semaphore

A semaphoreis an abstract data type used to control access to system
resources in areal-time operating system.

156

Glossary

SLIP
Serial Line Internet Protocol
Aninternet protocol designed to provide a TCP\IP connection over a
serial or modem link. SLIPisnow obsolete and isreplaced by PPP.

SMTP
Simple Mail Transfer Protocol
A TCP\IP application layer protocol for electronic mail transfer. SMTP
isused by aclient to send email by connecting to aremote server.

TFTP
Trivial File Transfer protocol
TFTPisaminimal file transfer protocol originally designed to boot
internet stations that did not have any form of data storage.

Telnet
Telnet is an internet protocol that provides acommand line
interface between a client and aremote internet station.

USB
Universal Serial Bus
A seria bus designed to allow easy plug and play expansion for PCs.

Task
In an operating system, atask is a self-contained unit of code.
Generally used in real-time computing.

SD/MMC
Secure Digital/Multi Media Card
Non volatile memory card formats used for portable devices.

	Preface
	Using This Book
	Chapter Overview

	Document Conventions
	Content
	Chapter 1. Introduction
	RL-ARM Overview
	RTX RTOS
	Flash File System
	TCP/IP
	USB
	CAN
	Installation
	Product Folder Structure
	Last-Minute Changes
	Requesting Assistance

	Chapter 2. Developing With an RTOS
	Getting Started
	Setting-Up a Project
	RTX Kernel
	Tasks
	Starting RTX
	Creating Tasks
	Task Management
	Multiple Instances
	Time Management
	Time Delay
	Periodic Task Execution
	Virtual Timer
	Idle Demon
	Inter-Task Communication
	Events
	RTOS Interrupt Handling
	Task Priority Scheme
	Semaphores
	Using Semaphores
	Signaling
	Multiplex
	Rendezvous
	Barrier Turnstile
	Semaphore Caveats
	Mutex
	Mutex Caveats
	Mailbox
	Task Lock and Unlock
	Configuration
	Task Definitions
	System Timer Configuration
	Round Robin Task Switching
	Scheduling Options
	Pre-emptive Scheduling
	Round Robin Scheduling
	Round Robin Pre-emptive Scheduling
	Co-operative Multitasking
	Priority Inversion

	Chapter 3. RL-Flash Introduction
	Getting Started
	Setting-Up the File System
	File I/O Routines
	Volume Maintenance Routines
	Flash Drive Configuration
	Adapting Flash Algorithms for RL-Flash
	MultiMedia Cards
	Serial Flash

	Chapter 4. RL-TCPnet Introduction
	TCP/IP – Key Concepts
	Network Model
	Ethernet and IEEE 802.3
	TCP/IP Datagrams
	Internet Protocol
	Address Resolution Protocol
	Subnet Mask
	Dynamic Host Control Protocol DHCP
	Internet Control Message Protocol
	Transmission Control Protocol
	User Datagram Protocol
	Sockets
	First Project - ICMP PING
	Debug Support
	Using RL-TCPnet with RTX
	RL-TCPnet Applications
	Trivial File Transfer
	Adding the TFTP Service
	HTTP Server
	Web Server Content
	Adding Web Pages
	Adding HTML as C Code
	Adding HTML with RL-Flash
	The Common Gateway Interface
	Dynamic HTML
	Data Input Using Web Forms
	Using the POST Method
	Using the GET Method
	Using JavaScript
	AJAX Support
	Simple Mail Transfer Client
	Adding SMTP Support
	Sending a Fixed Email Message
	Dynamic Message
	Telnet Server
	Telnet Helper Functions
	DNS Client
	Socket Library
	User Datagram Protocol (UDP) Communication
	Transmission Control Protocol (TCP) Communication
	Deployment
	Serial Drivers

	Chapter 5. RL-USB Introduction
	The USB Protocol – Key Concepts
	USB Physical Network
	Logical Network
	USB Pipes And Endpoints
	Interrupt Pipe
	Isochronous Pipe
	Bulk Pipe
	Bandwidth Allocation
	Device Configuration
	Device Descriptor
	Configuration Descriptor
	Interface Descriptor
	Endpoint Descriptor
	RL-USB
	RL-USB Driver Overview
	First USB Project
	Configuration
	Event Handlers
	USB Descriptors
	Class Support
	Human Interface Device
	HID Report Descriptors
	HID Client
	Enlarging the IN & OUT Endpoint Packet Sizes
	Mass Storage
	Audio Class
	Composite Device
	Compliance Testing

	Chapter 6. RL-CAN Introduction
	The CAN Protocol – Key Concepts
	CAN Node Design
	CAN Message Frames
	CAN Bus Arbitration
	RL-CAN Driver
	First Project
	CAN Driver API
	Basic Transmit and Receive
	Remote Request
	Object Buffers

	Glossary

