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Information in this document is subject to change without notice and does not 
represent a commitment on the part of the manufacturer.  The software described 
in this document is furnished under license agreement or nondisclosure 
agreement and may be used or copied only in accordance with the terms of the 
agreement.  It is against the law to copy the software on any medium except as 
specifically allowed in the license or nondisclosure agreement.  The purchaser 
may make one copy of the software for backup purposes.  No part of this manual 
may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, recording, or information storage and 
retrieval systems, for any purpose other than for the purchaser’s personal use, 
without written permission. 
 
Copyright © 1997-2009 ARM Ltd and ARM Germany GmbH.   
All rights reserved. 

Keil, the Keil Software Logo, µVision, MDK-ARM, RL-ARM, ULINK, and 
Device Database are trademarks or registered trademarks of ARM Ltd, and  
ARM Inc. 

 

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft 
Corporation. 

NOTE 
This manual assumes that you are familiar with Microsoft® Windows™ and the 
hardware and instruction set of the ARM7™ and ARM9™ processor families or 
the Cortex™-M series processors.  In addition, basic knowledge of µVision®4 is 
anticipated. 

Every effort was made to ensure accuracy in this manual and to give appropriate 
credit to persons, companies, and trademarks referenced herein. 
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Preface 
This manual is an introduction to the Real-Time Library (RL-ARM™), which is 
a group of tightly coupled libraries designed to solve the real-time and 
communication challenges of embedded systems based on ARM processor-based 
microcontroller devices. 

Using This Book 
This book comes with a number of practical exercises that demonstrate the key 
operating principles of the RL-ARM.  To use the exercises you will need to have 
both the Keil™ Microcontroller Development Kit (MDK-ARM™) installed and 
the Real-Time Library (RL-ARM).  If you are new to the MDK-ARM, there is a 
separate Getting Started guide, which will introduce you to the key features.  The 
online documentation for the MDK-ARM, including the Getting Started guide, is 
located at www.keil.com/support/man_arm.htm. 

Alongside the standard RL-ARM examples, this book includes a number of 
additional examples.  These examples present the key principles outlined in this 
book using the minimal amount of code.  Each example is designed to be built 
with the evaluation version of the MDK-ARM.  If this is not possible, the 
example is prebuilt so that it can be downloaded and run on a suitable evaluation 
board. 

This book is useful for students, beginners, advanced and experienced developers 
alike. 

However, it is assumed that you have a basic knowledge of how to use 
microcontrollers and that you are familiar with the instruction set of your 
preferred microcontroller.  In addition, it is helpful to have basic knowledge on 
how to use the µVision Debugger & IDE. 
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Chapter Overview 

“Chapter 1.  Introduction”, provides a product overview, remarks referring to 
the installation requirements, and shows how to get support from the Keil 
technical support team. 

“Chapter 2.  Developing with an RTOS”, describes the advantages of the RTX, 
explains the RTX kernel, and addresses RTOS features, such as tasks, 
semaphores, mutexes, time management, and priority schemes. 

“Chapter 3.  RL-Flash Introduction”, describes the features of the embedded 
file system, how to set it up, configuration options, standard routines used to 
maintain the file system, and how to adapt flash algorithms. 

“Chapter 4.  RL-TCPnet Introduction”, describes the network model, TCP key 
features, communication protocols, and how to configure an ARM processor-
based microcontroller to function with HTTP, Telnet, FTP, SMTP, or DNS 
applications. 

“Chapter 5.  RL-USB Introduction”, describes the USB key features, the 
physical and logical network, pipes and endpoints, the device communication 
descriptors, and the supported interfaces and their classes. 

“Chapter 6.  RL-CAN Introduction”, describes the CAN key concepts, the 
message frame, and the programming API implemented. 
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Document Conventions 
Examples Description 
README.TXT1 Bold capital text is used to highlight the names of executable programs, 

data files, source files, environment variables, and commands that you 
can enter at the command prompt.  This text usually represents 
commands that you must type in literally.  For example: 
 
 ARMCC.EXE DIR LX51.EXE 
 

Courier Text in this typeface is used to represent information that is displayed on 
the screen or is printed out on the printer 
This typeface is also used within the text when discussing or describing 
command line items. 
 

Variables Text in italics represents required information that you must provide.  For 
example, projectfile in a syntax string means that you must supply the 
actual project file name 
Occasionally, italics are used to emphasize words in the text. 
 

Elements that repeat… Ellipses (…) are used to indicate an item that may be repeated 
 

Omitted code 
 . 
 . 
 . 

Vertical ellipses are used in source code listings to indicate that a 
fragment of the program has been omitted.  For example:   
void main (void) { 
. 
. 
. 
while (1); 
 

 «Optional Items» Double brackets indicate optional items in command lines and input 
fields.  For example: 
C51 TEST.C PRINT «filename» 
 

{ opt1 | opt2 } Text contained within braces, separated by a vertical bar represents a 
selection of items.  The braces enclose all of the choices and the vertical 
bars separate the choices.  Exactly one item in the list must be selected.
 

Keys Text in this sans serif typeface represents actual keys on the keyboard.  
For example, “Press F1 for help”. 
 

Underlined text Text that is underlined highlights web pages.  In some cases, it marks 
email addresses. 

                                                      
1It is not required to enter commands using all capital letters. 
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Chapter 1.  Introduction 
The last few years have seen an explosive growth in both the number and 
complexity of ARM processor-based microcontrollers.  This diverse base of 
devices now offers the developer a suitable microcontroller for almost all 
applications.  However, this rise in sophisticated hardware also calls for more and 
more complex software.  With ever-shorter project deadlines, it is becoming just 
about impossible to develop the software to drive these devices without the use 
of third-party middleware. 

The Keil Real-Time Library (RL-ARM) is a 
collection of easy-to-use middleware components 
that are designed to work across many different 
microcontrollers.  This allows you to learn the 
software once and then use it multiple times.  
The RL-ARM middleware integrates into the 
Keil Microcontroller Development Kit  
(MDK-ARM). 

RTX RTOS Source Code

TCPnet Networking Suite

Flash File System

USB Device Interface

CAN Interface

RTOS and Middleware 
Components

E
xa

m
pl

es
 a

nd
 T

em
pl

at
es

These two development tools allow you to 
rapidly develop sophisticated software 
applications across a vast range of ARM 
processor-based microcontrollers.  In this book, 
we will look at each of the RL-ARM middleware components and see how to use 
all the key features in typical applications. 

RL-ARM Overview 
The RL-ARM library consists of 
five main components; a Flash-
based file system, a TCP/IP 
networking suite, drivers for 
USB and CAN, and the RTX 
Kernel.  Each of the middleware 
components is designed to be 
used with the Keil RTX real-time operating system.  However, with the 
exception of the CAN driver, each component may be used without RTX. 
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RTX RTOS 
Traditionally developers of 
small, embedded applications 
have had to write virtually all the 
code that runs on the 
microcontroller.  Typically, this 
is in the form of interrupt 
handlers with a main 
background-scheduling loop.  While there is nothing intrinsically wrong with 
this, it does rather miss the last few decades of advancement in program structure 
and design.  Now, for the first time, with the introduction of 32-bit ARM 
processor-based microcontrollers we have low-cost, high-performance devices 
with increasingly large amounts of internal SRAM and Flash memory.  This 
makes it possible to use more advanced software development techniques.  
Introducing a Real-Time Operating System (RTOS) or real-time executive into 
your project development is an important step in the right direction.  With an 
RTOS, all the functional blocks of your design are developed as tasks, which are 
then scheduled by RTX.  This forces a detailed design analysis and consideration 
of the final program structure at the beginning of the development. Each of the 
program tasks can be developed, debugged, and tested in isolation before 
integration into the full system.  Each RTOS task is then easier to maintain, 
document, and reuse.  However, using an RTOS is only half the story.  
Increasingly, customers want products that are more complex in shorter and 
shorter time.  While microcontrollers with suitable peripherals are available, the 
challenge is to develop applications without spending months writing the low-
level driver code. 

Flash File System 
The RL-Flash file system allows 
you to place a PC-compatible file 
system in any region of a 
microcontroller’s memory.  This 
includes the on-chip and external 
RAM and Flash memory, as well 
as SPI based Flash memory and 
SD/MMC memory cards. 
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The RL-Flash file system comes with all the driver support necessary, including 
low-level Flash drivers, SPI drivers, and MultiMedia Card interface drivers.  This 
gets the file system up-and-running with minimal fuss and allows you to 
concentrate on developing your application software.  In the past, the use of a full 
file system in a small, embedded microcontroller has been something of a luxury.  
However, once you start developing embedded firmware with access to a small 
file system, you will begin to wonder how you ever managed without it! 

TCP/IP 
The RL-TCPnet library is a full 
networking suite written for 
small ARM processor-based 
microcontrollers specifically.  It 
consists of one generic library 
with dedicated Ethernet drivers 
for supported microcontrollers 
and a single configuration file.  
SLIP and PPP protocols are also 
supported to allow UART-based 
communication either directly from a PC or remotely via a modem. 

The RL-TCPnet library supports raw TCP and UDP communication, which 
allows you to design custom networking protocols.  Additional application layer 
support can be added to enable common services, including SMTP clients to send 
email notification, plus DNS and DHCP clients for automatic configuration.  RL-
TCPnet can also enable a microcontroller to be a server for the TELNET, HTTP, 
and File Transfer (FTP) protocols.  

USB 
The USB protocol is complex 
and wide-ranging.  To implement 
a USB-based peripheral, you 
need a good understanding of the 
USB peripheral, the USB 
protocol, and the USB host 
operating system.   
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Typically, the host will be a PC.  This means that you need to have a deep 
knowledge of the Windows operating system and its device drivers.  Getting all 
of these elements working together would be a development project in its own.  
Like the TCP/IP library, the RL-USB driver is a common software stack 
designed to work across all supported microcontrollers.  Although you can use 
the RL-USB driver to communicate with a custom Windows device driver, it has 
been designed to support common USB classes.  Each USB class has its own 
native driver within the Windows operating system.  This means that you do not 
need to develop or maintain your own driver. 

The class support provided with RL-USB includes Human Interface Device 
(HID), Mass Storage Class (MSC), Communication Device Class (CDC), and 
Audio Class.  The HID Class allows you to exchange custom control and 
configuration data with your device.  The Mass Storage Class allows the 
Windows operating system to access the data stored within the RL-Flash file 
system in the same manner as a USB pen drive.  The Communication Device 
Class can be used to realize a virtual COM Port.  Finally, the Audio Class allows 
you to exchange streaming audio data between the device and a PC.  Together 
these four classes provide versatile support for most USB design requirements. 

CAN 
The RL-CAN driver is the one 
component of the RL-ARM 
library that is tightly coupled to 
the RTX.  The CAN driver 
consists of just six functions that 
allow you to initialize a given 
CAN peripheral, define, transmit 
and receive CAN message 
objects, and exchange data with other nodes on the CAN network. 

The RL-CAN driver has a consistent programming API for all supported CAN 
peripherals, allowing easy migration of code or integration of several different 
microcontrollers into the one project.  The CAN driver also uses RTX message 
queues to buffer, transmit and receive messages, ensuring ordered handling of the 
CAN network data. 
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Installation 
The RL-ARM is a collection of middleware components designed to integrate 
with the Keil Microcontroller Development Kit (MDK-ARM).  To use this book 
you will need to have both the MDK-ARM and RL-ARM installed on your PC.  
MDK-ARM may be installed from either CD-ROM, or may be downloaded from 
the web.  Currently, RL-ARM may only be downloaded from the web. 

Keil products are available on CD-ROM and via download from www.keil.com.   
Updates to the related products are regularly available at www.keil.com/update.   
Demo versions of various products are obtainable at www.keil.com/demo.   
Additional information is provided under www.keil.com/arm. 

Please check the minimum hardware and software requirements that must be 
satisfied to ensure that your Keil development tools are installed and will 
function properly.  Before attempting installation, verify that you have:  

 A standard PC running Microsoft Windows XP, or Windows Vista, 
 1GB RAM and 500 MB of available hard-disk space is recommended, 
 1024x768 or higher screen resolution; a mouse or other pointing device, 
 A CD-ROM drive. 

Product Folder Structure 
The SETUP program copies the development tools into subfolders.  The base 
folder defaults to C:\KEIL.  When the RL-ARM is installed, it integrates into the 
MDK-ARM installation.  The table below outlines the key RL-ARM files: 

File Type Path 

MDK-ARM Toolset C:\KEIL\ARM 
Include and Header Files C:\KEIL\ARM\RVxx\INC 
Libraries C:\KEIL\ARM\RVxx\LIB 
Source Code C:\KEIL\ARM\RL 
Standard Examples C:\KEIL\ARM\Boards\manufacturer\board 
Flash Programming C:\KEIL\ARM\FLASH 
On-line Help Files and Release Notes C:\KEIL\ARM\HLP 



Getting Started: Building Applications with RL-ARM 15 

Last-Minute Changes 
As with any high-tech product, last minute changes might not be included into 
the printed manuals.  These last-minute changes and enhancements to the 
software and manuals are listed in the Release Notes shipped with the product. 

Requesting Assistance 
At Keil, we are committed to providing you with the best-embedded 
development tools, documentation, and support.  If you have suggestions and 
comments regarding any of our products, or you have discovered a problem with 
the software, please report them to us, and where applicable make sure to: 

1. Read the section in this manual that pertains to the task you are attempting, 

2. Check the update section of the Keil web site to make sure you have the latest 
software and utility version, 

3. Isolate software problems by reducing your code to as few lines as possible. 

If you are still having difficulties, please report them to our technical support 
group.  Make sure to include your license code and product version number 
displayed through the Help – About Menu of µVision.  In addition, we offer the 
following support and information channels, accessible at ww.keil.com/support. 

1. The Support Knowledgebase is updated daily and includes the latest questions 
and answers from the support department, 

2. The Application Notes can help you in mastering complex issues, like 
interrupts and memory utilization, 

3. Check the on-line Discussion Forum, 

4. Request assistance through Contact Technical Support (web-based E-Mail), 

5. Finally, you can reach the support department directly via 
support.intl@keil.com or support.us@keil.com. 
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Chapter 2.  Developing With an RTOS 
In the course of this chapter we will consider the idea of using RTX, the Keil 
small footprint RTOS, on an ARM processor-based microcontroller.  If you are 
used to writing procedural-based C code on microcontrollers, you may doubt the 
need for such an operating system.  If you are not familiar with using an RTOS in 
real-time embedded systems, you should read this chapter before dismissing the 
idea.  The use of an RTOS represents a more sophisticated design approach, 
inherently fostering structured code development, which is enforced by the 
RTOS Application Programming Interface (API). 

The RTOS structure allows you to take an object-orientated design approach 
while still programming in C.  The RTOS also provides you with multithreaded 
support on a small microcontroller.  These two features create a shift in design 
philosophy, moving us away from thinking about procedural C code and flow 
charts.  Instead, we consider the fundamental program tasks and the flow of data 
between them.  The use of an RTOS also has several additional benefits, which 
may not be immediately obvious.  Since an RTOS-based project is composed of 
well-defined tasks, using an RTOS helps to improve project management, code 
reuse, and software testing. 

The tradeoff for this is that an RTOS has additional memory requirements and 
increased interrupt latency.  Typically, RTX requires between 500 Bytes and 
5KBytes of RAM and 5KBytes of code, but remember that some of the RTOS 
code would be replicated in your program anyway.  We now have a generation of 
small, low-cost microcontrollers that have enough on-chip memory and 
processing power to support the use of an RTOS.  Developing using this 
approach is therefore much more accessible. 

Getting Started 
This chapter first looks at setting up an introductory RTOS project for ARM7, 
ARM9, and Cortex-M based microcontrollers.  Next, we will go through each of 
the RTOS primitives and explain how they influence the design of our 
application code.  Finally, when we have a clear understanding of the RTOS 
features, we will take a closer look at the RTOS configuration file. 
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Setting-Up a Project 
The first exercise in the examples accompanying this book provides a PDF 
document giving a detailed step-by-step guide for setting up an RTX project.  
Here we will look at the main differences between a standard C program and an 
RTOS-based program.  First, our µVision project is defined in the default way.  
This means that we start a new project and select a microcontroller from the 
µVision Device Database®.  This will add the startup code and configure the 
compiler, linker, simulation model, 
debugger, and Flash programming 
algorithms.  Next, we add an empty C 
module and save it as main.c to start a C-
based application.  This will give us a 
project structure similar to that shown 
on the right.  A minimal application 
program consists of an Assembler file 
for the startup code and a C module. 

The RTX configuration is held in the 
file RTX_Config.c that must be added to 
your project.  As its name implies, 
RTX_Config.c holds the configuration 
settings for RTX.  This file is specific to 
the ARM processor-based 
microcontroller you are using.  Different versions of the file are located in 
C:\KEIL\ARM\STARTUP. 

If you are using an ARM7 or ARM9-based microcontroller, you can select the 
correct version for the microcontroller family you are using and RTX will work 
“out-of-the-box”.  For Cortex-M-based microcontrollers there is one generic 
configuration file.  We will examine this file in more detail later, after we have 
looked more closely at RTX and understood what needs to be configured. 

To enable our C code to access the RTX API, we need to add an include file to 
all our application files that use RTX functions.  To do this you must add the 
following include file in main. 

#include <RTL.h> 
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We must let the µVision IDE utility 
know that we are using RTX so that it 
can link in the correct library.  This is 
done by selecting “RTX Kernel” in the 
Options for Target menu, obtained by 
right clicking on “RTOS”. 

The RTX Kernel library is added to the 
project by selecting the operating 
system in the dialog Options for Target. 

When using RTX with an ARM7 or ARM9 based microcontroller, calls to the 
RTOS are made by Software Interrupt instructions (SWI).  In the default startup 
code, the SWI interrupt vector jumps to a tight loop, which traps SWI calls.  To 
configure the startup code to work with RTX we must modify the SWI vector 
code to call RTX. 

A part of RTX runs in the privileged supervisor mode and is called with software 
interrupts (SWI).  We must therefore disable the SWI trap in the startup code.  
With Cortex-based microcontroller, the interrupt structure is different and does 
not require you to change the startup code, so you can ignore this step. 

You must disable the default SWI handler and import the SWI_Handler used by 
the RTOS, when used with ARM7 or ARM9. 

                IMPORT  SWI_Handler 
 
Undef_Handler   B       Undef_Handler 
;SWI_Handler    B       SWI_Handler            ; Part of RTL 
PAbt_Handler    B       PAbt_Handler 
DAbt_Handler    B       DAbt_Handler 
IRQ_Handler     B       IRQ_Handler 
FIQ_Handler     B       FIQ_Handler 

In the vector table, the default SWI_Handler must be commented out and the 
SWI_Handler label must be declared as an import.  Now, when RTX generates a 
software interrupt instruction, the program will jump to the SWI_Handler in the 
RTX library.  These few steps are all that are required to configure a project to 
use RTX. 

Exercise:  First Project 
 
The first RTOS exercise guides you through setting up and debugging an RTX-
based project. 
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RTX Kernel 
RTX consists of a scheduler that supports round-robin, pre-emptive, and co-
operative multitasking of program tasks, as well as time and memory 
management services.  Inter-task communication is supported by additional 
RTOS objects, including event triggering, semaphores, Mutex, and a mailbox 
system.  As we will see, interrupt handling can also be accomplished by 
prioritized tasks, which are scheduled by the RTX kernel. 

The RTX kernel contains a 
scheduler that runs program code 
as tasks.  Communication 
between tasks is accomplished 
by RTOS objects such as events, 
semaphores, Mutexes, and 
mailboxes.  Additional RTOS 
services include time and 
memory management and 
interrupt support. 

Tasks 
The building blocks of a typical C program are functions that we call to perform 
a specific procedure and which then return to the calling function.  In an RTOS, 
the basic unit of execution is a “Task”.  A task is very similar to a C procedure, 
but has some fundamental differences. 

Procedure Task 
unsigned int procedure (void)  { 
  … 
  … 
  return (val); 
} 

__task void task (void)  { 
  for (;;) { 
      … 
  } 
} 

We always expect to return from C functions, however, once started an RTOS 
task must contain an endless loop, so that it never terminates and thus runs 
forever.  You can think of a task as a mini self-contained program that runs 
within the RTOS.  While each task runs in an endless loop, the task itself may be 
started by other tasks and stopped by itself or other tasks.  A task is declared as a 
C function, however RTX provides an additional keyword __task that should be 
added to the function prototype as shown above.  This keyword tells the compiler 
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not to add the function entry and exit code.  This code would normally manage 
the native stack.  Since the RTX scheduler handles this function, we can safely 
remove this code.  This saves both code and data memory and increases the 
overall performance of the final application. 

An RTOS-based program is made up of a number of tasks, which are controlled 
by the RTOS scheduler.  This scheduler is essentially a timer interrupt that allots 
a certain amount of execution time to each task.  So task1 may run for 100ms 
then be de-scheduled to allow task2 to run for a similar period; task 2 will give 
way to task3, and finally control passes back to task1.  By allocating these slices 
of runtime to each task in a round-robin fashion, we get the appearance of all 
three tasks running in parallel to each other.  

Conceptually we can think of each task as performing a specific functional unit 
of our program, with all tasks running simultaneously.  This leads us to a more 
object-orientated design, where each functional block can be coded and tested in 
isolation and then integrated into a fully running program.  This not only imposes 
a structure on the design of our final application but also aids debugging, as a 
particular bug can be easily isolated to a specific task.  It also aids code reuse in 
later projects.  When a task is created, it is allocated its own task ID.  This is a 
variable, which acts as a handle for each task and is used when we want to 
manage the activity of the task. 

OS_TID id1, id2, id3; 

Task Control Block Task Stack

Priority & State Context

Task

In order to make the task-switching process happen, we have the code overhead 
of the RTOS and we have to dedicate a CPU hardware timer to provide the 
RTOS time reference.  For ARM7 and ARM9 this must be a timer provided by 
the microcontroller peripherals.  In a Cortex-M microcontroller, RTX will use the 
SysTick timer within the Cortex-M processor.  Each time we switch running 
tasks the RTOS saves the state of all the task variables to a task stack and stores 
the runtime information about a 
task in a Task Control Block.  The 
“context switch time”, that is, the 
time to save the current task state 
and load up and start the next task, 
is a crucial value and will depend 
on both the RTOS kernel and the 
design of the underlying hardware. 
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Each task has its own stack for saving its data during a context switch.  The Task 
Control Block is used by the kernel to manage the active tasks. 

The Task Control Block contains information about the status of a task.  Part of 
this information is its run state.  A task can be in one of four basic states, 
RUNNING, READY, WAITING, or INACTIVE.  In a given system only one 
task can be running, that is, the CPU is executing its instructions while all the 
other tasks are suspended in one of the other states.  RTX has various methods of 
inter-task communication: events, semaphores, and messages.  Here, a task may 
be suspended to wait to be signaled by another task before it resumes its READY 
state, at which point it can be placed into RUNNING state by the RTX scheduler. 

At any moment a single task may be running.  Tasks may also be waiting on an 
OS event.  When this occurs, the tasks return to the READY state and are 
scheduled by the kernel. 

Task Description 

RUNNING The currently running TASK 
READY TASKS ready to run 
WAIT DELAY TASKS halted with a time DELAY 
WAIT INT TASKS scheduled to run periodically 
WAIT OR TASKS waiting an event flag to be set 
WAIT AND TASKS waiting for a group event flag to be set 
WAIT SEM TASKS waiting for a SEMAPHORE 
WAIT MUT TASKS waiting for a SEMAPHORE MUTEX 
WAIT MBX TASKS waiting for a MAILBOX MESSAGE 
INACTIVE A TASK not started or detected 

Starting RTX 
To build a simple RTX-based program, we declare each task as a standard C 
function and a TASK ID variable for each Task. 

__task  void task1 (void); 
__task  void task2 (void); 
OS_TID  tskID1,  tskID2; 

After reset, the microcontroller enters the application through the main() 
function, where it executes any initializing C code before calling the first RTX 
function to start the operating system running. 
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void main (void)  { 
 
  IODIR1 = 0x00FF0000;      // Do any C code you want 
  os_sys_init (task1);      // Start the RTX call the first task  
} 

The os_sys_init () function launches RTX, but only starts the first task running.  
After the operating system has been initialized, control will be passed to this task.  
When the first task is created it is assigned a default priority.  If there are a 
number of tasks ready to run and they all have the same priority, they will be 
allotted run time in a round-robin fashion.  However, if a task with a higher 
priority becomes ready to run, the RTX scheduler will de-schedule the currently 
running task and start the high priority task running.  This is called pre-emptive 
priority-based scheduling.  When assigning priorities you have to be careful, 
because the high priority task will continue to run until it enters a WAITING 
state or until a task of equal or higher priority is ready to run. 

Tasks of equal priority will be 
scheduled in a round-robin 
fashion.  High priority tasks will 
pre-empt low priority tasks and 
enter the RUNNING state “on 
demand”. 

Two additional calls are 
available to start RTX; 
os_sys_init_prio(task1) will start the RTOS and create the task with a user-
defined priority.  The second OS call is os_sys_init_user(task1, &stack, 
Stack_Size).  This starts the RTOS and defines a user stack. 

Creating Tasks 
Once RTX has been started, the first task created is used to start additional tasks 
required for the application.  While the first task may continue to run, it is good 
programming style for this task to create the necessary additional tasks and then 
delete itself. 

__task void task1 (void)  { 
tskID2 = os_tsk_create (task2,0x10);      // Create the second task  
                                          // and assign its priority. 
tskID3 = os_tsk_create (task3,0x10);      // Create additional tasks 
                                          // and assign priorities. 
os_tsk_delete_self ();                    // End and self-delete this task 
} 
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The first task can create further active tasks with the os_tsk_create() function.  
This launches the task and assigns its task ID number and priority.  In the 
example above we have two running tasks, task2 and task3, of the same priority, 
which will both be allocated an equal share of CPU runtime.  While the 
os_tsk_create() call is suitable for creating most tasks, there are some additional 
task creation calls for special cases. 

It is possible to create a task and pass a parameter to the task on startup.  Since 
tasks can be created at any time while RTX is running, a task can be created in 
response to a system event and a particular parameter can be initialized on 
startup. 

tskID3 = os_tsk_create_ex (Task3, priority, parameter); 

When each task is created, it is also assigned its own stack for storing data during 
the context switch.  This task stack is a fixed block of RAM, which holds all the 
task variables.  The task stacks are defined when the application is built, so the 
overall RAM requirement is well defined.  Ideally, we need to keep this as small 
as possible to minimize the amount of RAM used by the application.  However, 
some tasks may have a large buffer, requiring a much larger stack space than 
other tasks in the system.  For these tasks, we can declare a larger task stack, 
rather than increase the default stack size. 

static U64 stk4 [400/8]; 

A task can now be declared with a custom stack size by using the 
os_tsk_create_user() call and the dedicated stack. 

tskID4 = os_tsk_create_user (Task4, priority, &stk4, sizeof (stk4)); 

Finally, there is a combination of both of the above task-creating calls where we 
can create a task with a large stack space and pass a parameter on startup. 

static U64 stk5 [400/8]; 

tskID5 = os_tsk_create_user_ex (Tsk5, prio, &stk5, sizeof (stk5), param); 

Exercise:  Tasks 
 
This exercise presents the minimal code to start the RTOS and create two 
running tasks. 
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Task Management 
Once the tasks are running, there are a small number of RTX system calls, which 
are used to manage the running tasks.  It is possible to elevate or lower a task’s 
priority either from another function or from within its own code. 

OS_RESULT os_tsk_prio (tskID2, priority); 
OS_RESULT os_tsk_prio_self (priority); 

As well as creating tasks, it is also possible for a task to delete itself or another 
active task from the RTOS.  Again we use the task ID rather than the function 
name of the task. 

OS_RESULT = os_tsk_delete (tskID1); 
            os_tsk_delete_self (); 

Finally, there is a special case of task switching where the running task passes 
control to the next ready task of the same priority.  This is used to implement a 
third form of scheduling called co-operative task switching. 

os_tsk_pass ();                     // switch to next ready to run task 

Multiple Instances 
One of the interesting possibilities of an RTOS is that you can create multiple 
running instances of the same base task code.  For example, you could write a 
task to control a UART and then create two running instances of the same task 
code.  Here each instance of UART_Task would manage a different UART. 

tskID3_0 = os_tsk_create_ex (UART_Task, priority, UART1); 

Exercise:  Multiple instances 
 
This exercise creates multiple instances of one base task and passes a parameter 
on startup to control the functionality of each instance. 

Time Management 
As well as running your application code as tasks, RTX also provides some 
timing services, which can be accessed through RTX function calls.  
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Time Delay 
The most basic of these timing services is a simple timer delay function.  This is 
an easy way of providing timing delays within your application.  Although the 
RTX kernel size is quoted as 5K bytes, features such as delay loops and simple 
scheduling loops are often part of a non-RTOS application and would consume 
code bytes anyway, so the overhead of the RTOS can be less than it initially 
appears. 

void os_dly_wait (unsigned short delay_time) 

This call will place the calling task into the WAIT_DELAY state for the 
specified number of system timer ticks.  The scheduler will pass execution to the 
next task in the READY state. 

During their lifetime, tasks move 
through many states.  Here, a 
running task is blocked by an 
os_dly_wait() call so it enters a 
WAIT state.  When the delay 
expires, it moves to the READY 
state.  The scheduler will place it 
in the RUN state.  If its time slice 
expires, it will move back to the 
READY state. 

When the timer expires, the task will leave the WAIT_DELAY state and move to 
the READY state.  The task will resume running when the scheduler moves it to 
the RUNNING state.  If the task then continues executing without any further 
blocking OS calls, it will be de-scheduled at the end of its time slice and be 
placed in the READY state, assuming another task of the same priority is ready 
to run. 

Exercise:  Time Management 
 
This exercise replaces the user delay loops with the OS delay function. 
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Periodic Task Execution 
We have seen that the scheduler runs tasks with a round-robin or pre-emptive 
scheduling scheme.  With the timing services, it is also possible to run a selected 
task at specific time intervals.  Within a task, we can define a periodic wake-up 
interval. 

void os_itv_set (unsigned short interval_time) 

Then we can put the task to sleep and wait for the interval to expire.  This places 
the task into the WAIT_INT state. 

void os_itv_wait (void) 

When the interval expires, the task moves from the WAIT_INT to the READY 
state and will be placed into the RUNNING state by the scheduler. 

Exercise:  Interval 
 
This exercise modifies the two-task example to use interval service so that both 
tasks run at a fixed period. 

Virtual Timer 
As well as running tasks on a defined periodic basis, we can define any number 
of virtual timers, which act as countdown timers.  When they expire, they run a 
user call-back function to perform a specific action.  A virtual timer is created 
with the os_timer_create() function.  This system call specifies the number of 
RTOS system timer ticks before it expires and a value “info”, which is passed to 
the callback function to identify the timer.  Each virtual timer is also allocated an 
OS_ID handle, so that it can be managed by other system calls. 

OS_ID os_tmr_create (unsigned short tcnt, unsigned short info) 

When the timer expires, it calls the function os_tmr_call().  The prototype for 
this function is located in the RTX_Config.c file. 
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void os_tmr_call (U16 info)  { 
 
   switch (info)  { 
      case 0x01:  
         …                    // user code here 
      break ; 
   } 
} 

This function knows which timer has expired by reading the info parameter.  We 
can then run the appropriate code after the “case” statement. 

Exercise:  Timer 
 
This exercise modifies the two-task-program to use virtual timers to control the 
rate at which the LEDs flash. 

Idle Demon 
The final timer service provided by RTX is not really a timer, but this is probably 
the best place to discuss it.  If, during our RTOS program, there is no task 
running and no task ready to run (e.g. they are all waiting on delay functions), 
then RTX uses the spare runtime to call an “Idle Demon” that is located in the 
RTX_Config.c file.  This idle code is in effect a low priority task within the RTOS, 
which only runs when nothing else is ready. 

__task void os_idle_demon (void)  { 
 
   for (;;)  { 
      …                       // user code here 
   } 
} 

You can add any code to this task, but it has to obey the same rules as user tasks. 

Exercise:  Idle Demon 
 
This example demonstrates how to add code to the idle task, so that the 
application can perform “book keeping” tasks in the spare cycles not consumed 
by the main application. 
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Inter-Task Communication 
So far we have seen how application code can be written as independent tasks 
and how we can access the timing services provided by RTX.  In a real 
application, we need to be able to communicate between tasks in order to make 
an application useful.  To enable this, a typical RTOS supports several different 
communication objects, which can be used to link the tasks together to form a 
meaningful program.  RTX supports inter-task communication with events, 
semaphores, mutexes, and mailboxes. 

Events 
When each task is first created, it has sixteen event flags.  These are stored in the 
Task Control Block.  It is possible to halt the execution of a task until a particular 
event flag or group of event flags are set by another task in the system. 

Each task has 16 event flags.  A 
task may be placed into a waiting 
state until a pattern of flags is set 
by another task.  When this 
happens, it will return to the 
READY state and wait to be 
scheduled by the kernel. 

The two event wait system calls 
suspend execution of the task 
and place it into the WAIT_EVNT state.  By using the AND or OR version of the 
event wait call, we can wait for a group of event flags to be set or until one flag 
in a selected group is set.  It is also possible to define a periodic timeout after 
which the waiting task will move back to the READY state, so that it can resume 
execution when selected by the scheduler.  A value of 0xFFFF defines an infinite 
timeout period. 

OS_RESULT os_evt_wait_and (unsigned short wait_flags,  
                           unsigned short timeout); 

OS_RESULT os_evt_wait_or (unsigned short wait_flags, 
                          unsigned short timeout); 
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Any task can set the event flags of any other task in a system with the 
os_evt_set() RTX function call.  We use the task ID to select the task. 

void os_evt_set (unsigned short event_flags, OS_TID task); 

As well as setting a task’s event flags, it is also possible to clear selected flags. 

void os_evt_clr (U16 clear_flags, OS_TID task); 

When a task resumes execution after it has been waiting for an os_evt_wait_or() 
function to complete, it may need to determine which event flag has been set.  
The os_evt_get() function allows you to determine the event flag that was set.  
You can then execute the correct code for this condition. 

which_flag = os_evt_get (); 

Exercise:  Events 
 
This exercise extends the simple two-task-example and uses event flags to 
synchronize the activity between the active tasks. 

RTOS Interrupt Handling 
The use of event flags is a simple and efficient method of controlling actions 
between tasks.  Event flags are also an important method of triggering tasks to 
respond to interrupt sources within the ARM processor-based microcontroller.  
While it is possible to run C code in an interrupt service routine (ISR), this is not 
desirable within an RTX-based application.  This is because on an ARM7/9 
based device you will disable further general-purpose interrupts until you quit the 
ISR.  This delays the timer tick and disrupts the RTX kernel.  This is less of a 
problem on Cortex-M profile-based devices, as the Cortex-M interrupt structure 
supports nested interrupts.  However, it is still good practice to keep the time 
spent in interrupts to a minimum. 

A traditional nested interrupt 
scheme supports prioritized 
interrupt handling, but has 
unpredictable stack 
requirements. 
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ARM7/9-based microcontrollers do not support nested interrupts without 
additional software to avoid potential deadlocks and any system based on nested 
interrupts has an unpredictable stack usage.  With an RTX-based application, it is 
best to implement the interrupt service code as a task and assign it a high priority.  
The first line of code in the interrupt task should make it wait for an event flag.  
When an interrupt occurs, the ISR simply sets the event flag and terminates.  This 
schedules the interrupt task, which services the interrupt and then goes back to 
waiting for the next event flag to be set. 

Within the RTX RTOS, interrupt 
code is run as tasks.  The 
interrupt handlers signal the tasks 
when an interrupt occurs.  The 
task priority level defines which 
task gets scheduled by the kernel. 

The RTX RTOS has an event set 
call, which is designed for use within an interrupt handler. 

void isr_evt_set (unsigned short event_flags, OS_TID task); 

A typical task intended to handle interrupts will have the following structure: 

void Task3 (void)  { 
 
  while (1)  { 
    os_evt_wait_or (0x0001, 0xffff);  // Wait until ISR triggers an event 
    …                                 // Handle the interrupt 
  }                                   // Loop and go back to sleep 
} 

The actual interrupt source will contain a minimal amount of code. 

void IRQ_Handler (void) __irq  { 
 
   isr_evt_set (0x0001, tsk3);    // Signal Task 3 with an event 
   EXTINT = 0x00000002;           // Clear the peripheral interrupt flag 
   VICVectAddr = 0x00000000;      // Signal end of interrupt to the VIC 
} 

Exercise:  Interrupt Events 
 
This exercise demonstrates how to integrate interrupt handling into an RTX-
based application by using event flags. 
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Task Priority Scheme 
When writing an RTOS-based application you must have a clear idea of how you 
will prioritize tasks.  The FIQ interrupt is the highest priority interrupt on ARM 
CPUs (a non-maskable interrupt is available in Cortex processors).  The FIQ is 
not handled by RTX and so there is no overhead in serving it. 

The remaining interrupts are handled as IRQ interrupts, which can be used to 
trigger tasks (as discussed above).  After the IRQ interrupts, important 
background tasks may be assigned an appropriate priority level.  Finally, the 
round robin tasks can be assigned priority level one with the idle task running at 
priority zero. 

A typical RTOS priority scheme 
places the FIQ and IRQ triggered 
tasks at highest priority, followed 
by high priority background 
tasks, with round robin tasks at 
lowest user task priority.  The 
idle task is at priority zero and 
will use up any spare cycles. 

Any task that is above the round 
robin priority level must be a 
self-blocking task, i.e. do a job 
and halt.  If any high priority task does not block, then it will run forever, halting 
any lower priority tasks. 
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Semaphores 
Like events, semaphores are a method of synchronizing activity between two or 
more tasks.  Put simply, a semaphore is a container that holds a number of 
tokens.  As a task executes, it will reach an RTOS call to acquire a semaphore 
token.  If the semaphore contains one or more tokens, the task will continue 
executing and the number of tokens in the semaphore will be decremented by 
one.  If there are currently no tokens in the semaphore, the task will be placed in 
a WAITING state until a token becomes available.  At any point in its execution, 
a task may add a token to the semaphore causing its token count to increment by 
one. 

Semaphores are used to control 
access to program resources.  
Before a task can access a 
resource, it must acquire a token.  
If none is available, it waits.  
When it is finished with the 
resource, it must return the 
token. 

The diagram illustrates the use of 
a semaphore to synchronize two 
tasks.  First, the semaphore must 
be created and initialized with an 
initial token count.  In this case, 
the semaphore is initialized with a single token.  Both tasks run and reach a point 
in their code where they will attempt to acquire a token from the semaphore.  The 
first task to reach this point will acquire the token from the semaphore and 
continue execution.  The second task will also attempt to acquire a token, but as 
the semaphore is empty, it will halt execution and be placed into a WAITING 
state until a semaphore token is available. 

Meanwhile, the executing task can release a token back to the semaphore.  When 
this happens, the waiting task will acquire the token and leave the WAITING 
state for the READY state.  Once in the READY state, the scheduler will place 
the task into the RUN state so that task execution can continue.  Although 
semaphores have a simple set of RTX API calls, they can be one of the more 
difficult RTX objects to fully understand.  In this section, we will first look at 
how to add semaphores to an RTOS program and then go on to look at the most 
useful semaphore applications. 
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To use a semaphore in RTX you must first declare a semaphore container: 

OS_SEM <semaphore>; 

Then within a task, the semaphore container can be initialized with a number of 
tokens. 

void os_sem_init (OS_ID semaphore, unsigned short token_count); 

It is important to understand that semaphore tokens may also be created and 
destroyed as tasks run.  So for example, you can initialize a semaphore with zero 
tokens and then use one task to create tokens into the semaphore while another 
task removes them.  This allows you to design tasks as producer and consumer 
tasks. 

Once the semaphore is initialized, tokens may be acquired and sent to the 
semaphore in a similar fashion as event flags.  The os_sem_wait() call is used to 
block a task until a semaphore token is available, like the os_evnt_wait_or() call.  
A timeout period may also be specified with 0xFFFF being an infinite wait. 

OS_RESULT os_sem_wait (OS_ID semaphore, unsigned short timeout) 

When a token is available in the semaphore a waiting task will acquire the token, 
decrementing the semaphore token count by one.  Once the token has been 
acquired, the waiting task will move to the READY state and then into the RUN 
state when the scheduler allocates it run time on the CPU. 

When the task has finished using the semaphore resource, it can send a token to 
the semaphore container. 

OS_RESULT os_sem_send (OS_ID semaphore) 

Like events, interrupt service routines can send semaphore tokens to a semaphore 
container.  This allows interrupt routines to control the execution of tasks 
dependant on semaphore access. 

void isr_sem_send (OS_ID semaphore) 

Exercise:  Semaphores 
 
This first semaphore exercise demonstrates the basic configuration and use of a 
semaphore. 
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Using Semaphores 
Although semaphores have a simple set of OS calls, they have a wide range of 
synchronizing applications.  This makes them perhaps the most challenging 
RTOS objects to understand.  In this section, we will look at the most common 
uses of semaphores.  Some are taken from “The Little Book Of Semaphores” by 
Allen B. Downy, and may be freely downloaded from the URL given in the 
bibliography at the end of this book. 

Signaling 
Synchronizing the execution of two tasks is the simplest use of a semaphore: 

os_sem semB; 
 
__task void task1 (void)  { 
   os_sem_init (semB, 0); 
   while (1)  { 
      os_sem_send (semB); 
      FuncA(); 
   } 
} 

 
 
__task void task2 (void)  { 
 
   while (1)  { 
      os_sem_wait (semB, 0xFFFF); 
      FuncB(); 
   } 
} 

In this case, the semaphore is used to ensure that the code in FuncA() is executed 
before the code in FuncB(). 

Multiplex 
A multiplex semaphore limits the number of tasks that can access a critical 
section of code.  For example, routines that access memory resources and can 
support a limited number of calls. 

os_sem Multiplex; 
 
void task1 (void) __task  { 
 
   os_sem_init (Multiplex, 5); 
   while (1)  { 
      os_sem_wait (Multiplex, 0xFFFF); 
      ProcessBuffer (); 
      os_sem_send (Multiplex); 
   } 
} 
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Here, the multiplex semaphore has five tokens.  Before a task can continue, it 
must acquire a token.  Once the function finished, the token is sent back.  If more 
than five tasks are calling ProcessBuffer(), the sixth task must wait until a 
running task finishes and returns its token.  Thus, the multiplex ensures that a 
maximum of 5 instances of the ProcessBuffer() function may be called at any one 
time. 

Exercise:  Multiplex 
 
This exercise demonstrates the use of a multiplex to limit the number of 
illuminated LEDs. 

Rendezvous 
A more generalized form of semaphore signaling is a rendezvous.  A rendezvous 
ensures that two tasks reach a certain point of execution.  Neither may continue 
until both have reached the rendezvous point. 

os_sem Arrived1, Arrived2; 
 
__task void task1 (void)  { 
 
  os_sem_init (Arrived1, 0); 
  os_sem_init (Arrived2, 0); 
  while (1)  { 
    FuncA1 (); 
    os_sem_send (Arrived1); 
    os_sem_wait (Arrived2, 0xFFFF);
    FuncA2 (); 
  } 
} 

 
 
__task void task2 (void)  { 
 
 
 
  while (1)  { 
    FuncB1 (); 
    os_sem_send (Arrived2); 
    os_sem_wait (Arrived1, 0xFFFF);
    FuncB2 (); 
  } 
} 

 

In the example above, the two semaphores ensure that both tasks will rendezvous 
and proceed then to execute FuncA2() and FuncB2(). 

Exercise:  Rendezvous 
 
This exercise uses rendezvous semaphores to synchronize the activity of two 
tasks. 
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Barrier Turnstile 
Although a rendezvous is very 
useful for synchronizing the 
execution of code, it only works 
for two functions.  A barrier is a 
more generalized form of 
rendezvous, which works to 
synchronize multiple tasks.  A 
barrier is shared between a 
defined number of tasks.  As 
each task reaches the barrier it 
will halt and de schedule.  When 
all of the tasks have arrive at the 
barrier it will open and all of the tasks will resume execution simultaneously. 

The barrier uses semaphores to build a code object called a turnstile.  The 
turnstile is like a gate.  Initially the turnstile gate is locked.  When all of the tasks 
have arrived at the turnstile, it will open allowing all of the tasks to continue 
‘simultaneously’.  Once the critical code has been executed each task will pass 
through a second exit turnstile.  The exit turnstile is used to lock the first entry 
turnstile and reset the barrier object so the barrier can be reused. 

The barrier object is a sophisticated use of semaphores so it its worth spending 
some time studying it.  The barrier object uses three semaphores, the entry 
turnstile, Entry_Turnstile, the exit turnstile, Exit_Turnstile, and a Mutex, which 
ensures that only one task at a time executes the critical code section.  The 
general structure of the barrier is: 

while(1)  { 
  Entry Turnstile code 
  Synchronised code section 
  Exit Turnstile code 
} 
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The code for the entry turnstile is duplicated in each of the participating tasks: 

os_sem_init(Mutex, 1); 
os_sem_init(Entry_Turnstile, 0); 
os_sem_init(Exit_Turnstile, 1); 
count = 0; 
 
…………… 
while (1)  { 
…………… 
  os_sem_wait (Mutex, 0xffff);              // Begin critical section 
  count = count+1;  
  if (count==4)  {  
    os_sem_wait (Exit_Turnstile, 0xffff); 
    os_sem_send (Entry_Turnstile);  
  } 
  os_sem_send (Mutex);                      // End critical section 
  os_sem_wait (Entry_Turnstile, 0xffff);    // Turnstile gate 
  os_sem_send (Entry_Turnstile);  
 

In this example, a barrier synchronizes four tasks.  As the first task arrives, it will 
increment the count variable.  Execution continues until it reaches the turnstile 
gate os_sem_wait(Entry_Turnstile,0xffff).  At this point, the Entry_Turnstile 
semaphore is zero.  This will cause the task to halt and de-schedule.  The same 
will happen to the second and third task.  When the fourth task enters the 
turnstile, the value of count will become four.  This causes the  
if( count == 4) statement to be executed.  Now, a token is placed into the 
Entry_Turnstile semaphore.  When the fourth task reaches the 
os_sem_wait(Entry_Turnstile,0xffff) statement, a token is available, so it can 
continue execution.  The turnstile gate is now open.  Once the fourth task has 
passed through the gate, it places a token back into the Entry_Turnstile 
semaphore.  This allows a waiting task to resume execution.  As each waiting 
task resumes, it writes a token into the Entry_Turnstile semaphore.  The Mutex 
semaphore locks access to the critical section of the turnstile.  The Mutex 
semaphore ensures that each task will exclusively execute the critical section.  In 
the critical section, the last arriving task will also remove a token from 
Exit_Turnstile.  This closes the gate of the Exit_Turnstile, as we shall see below. 

  os_sem_wait (Mutex, 0xffff);              // Begin critical section 
  count = count-1; 
  if (count==0)  { 
    os_sem_wait (Entry_Turnstile,0xffff);  
    os_sem_send (Exit_Turnstile);  
  } 
  os_sem_send (Mutex);                      // End critical section 
  os_sem_wait (Exit_Turnstile,0xffff); );   // Turnstile gate  
  os_sem_send (Exit_Turnstile); 
} 
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Semaphore Caveats 
Semaphores are an extremely useful feature of any RTOS.  However, 
semaphores can be misused.  You must always remember that the number of 
tokens in a semaphore is not fixed.  During the runtime of a program, semaphore 
tokens may be created and destroyed.  Sometimes this is useful, but if your code 
depends on having a fixed number of tokens available to a semaphore, you must 
be very careful to return tokens always back to it.  You should also rule out the 
possibility of creating additional new tokens. 

Mutex 
Mutex stands for “Mutual Exclusion”.  A Mutex is a specialized version of a 
semaphore.  Like a semaphore, a Mutex is a container for tokens.  The difference 
is that a Mutex is initialized with one token.  Additional Mutex tokens cannot be 
created by tasks.  The main use of a Mutex is to control access to a chip resource 
such as a peripheral.  For this reason, a Mutex token is binary and bounded.  
Apart from this, it really works in the same way as a semaphore.  First, we must 
declare the Mutex container and initialize the Mutex: 

os_mut_init (OS_ID mutex); 

Then any task needing to access the peripheral must first acquire the Mutex 
token: 

os_mut_wait (OS_ID mutex, U16 timeout); 

Finally, when we are finished with the peripheral, the Mutex must be released: 

os_mut_release (OS_ID mutex); 

Mutex use is much more rigid than semaphore use, but is a much safer 
mechanism when controlling absolute access to underlying chip registers. 

Exercise:  Mutex 
 
This exercise uses a Mutex to control access to the microcontroller UART. 
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Mutex Caveats 
Clearly, you must take care to return the Mutex token when you are finished with 
the chip resource, or you will have effectively prevented any other task from 
accessing it.  You must also be careful about using the os_task_delete() call on 
functions that control a Mutex token.  RTX is designed to be a small footprint 
RTOS.  Consequently, there is no task deletion safety.  This means that if you 
delete a task that is controlling a Mutex token, you will destroy the Mutex token 
and prevent any further access to the guarded peripheral. 

Mailbox 
So far, all of the inter-task communication methods have only been used to 
trigger execution of tasks: they do not support the exchange of program data 
between tasks.  Clearly, in a real program we will need to move data between 
tasks.  This could be done by reading and writing to globally declared variables.  
In anything but a very simple program, trying to guarantee data integrity would 
be extremely difficult and prone to unforeseen errors.  The exchange of data 
between tasks needs a more formal asynchronous method of communication. 

RTX contains a mailbox system that buffers messages into mail slots and 
provides a FIFO queue between the sending and receiving tasks.  The mailbox 
object supports transfer of single variable data such as byte, integer and word-
width data, formatted fixed length messages, and variable length messages.  We 
will start by having a look at configuring and using fixed length messaging.  For 
this example, we are going to transfer a message consisting of a four-byte array 
that contains nominally ADC results data and a single integer of I/O port data. 

unsigned char ADresult [4]; 
unsigned int PORT0; 

To transfer this data between tasks, we need to declare a suitable data mailbox.  
A mailbox consists of a buffer formatted into a series of mail slots and an array 
of pointers to each mail slot. 

A mailbox object consists of a memory block formatted into message buffers and 
a set of pointers to each buffer. 
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To configure a mailbox object 
we must first declare the 
message pointers.  Here we are 
using 16 mail slots.  This is an 
arbitrary number and varies 
depending on your requirements, 
but 16 is a typical starting point.  
The message pointers are 
declared as an array of unsigned 
integers using the following 
macro: 

os_mbx_declare (MsgBox, 16); 

Next, we must declare a structure to hold the data to be transferred.  This is the 
format of each message slot: 

typedef struct  { 
   unsigned char ADresult [4]; 
   unsigned int PORT0; 
} MESSAGE; 

Once we have defined the format of the message slot, we must reserve a block of 
memory large enough to accommodate 16 message slots: 

_declare_box (mpool, sizeof (MESSAGE), 16); 

This block of memory then has to be formatted into the required 16 mail slots 
using a function provided with the RTOS: 

_init_box (mpool, sizeof (mpool), sizeof (MESSAGE)); 

Now, if we want to send a message between tasks, we can create a pointer of the 
message structure type and allocate it to a mail slot. 

MESSAGE *mptr; 
mptr = _allocbox (mpool); 

Next, we fill this mail slot with the data to be transferred: 

for (int i=0; i<4; i++)  { 
   mptr->ADresult [i] = ADresult (i); 
   mptr->PORT0 = IOPIN0; 
} 



Getting Started: Building Applications with RL-ARM 41 

Then we send the message. 

os_mbx_send (MsgBox, mptr, 0xffff); 

In practice, this locks the mail slot protecting the data, and the message pointer is 
transferred to the waiting task.  Further messages can be sent using the same 
calls, which will cause the next mail slot to be used.  The messages will form a 
FIFO queue.  In the receiving task, we must declare a receiving pointer with the 
message structure type.  Then we wait for a message with the os_mxb_wait() call.  
This call allows us to nominate the mailbox that we want to use, provide the 
pointer to the mail slot buffer, and specify a timeout value. 

MESSAGE *rptr; 

When the message is received, we can simply access the data in the mail slot and 
transfer them to variables within the receiving task. 

pwm_value = *rptr->ADresult [0]; 

Finally, when we have made use of the data within the mail slot it can be released 
so that it can be reused to transfer further messages. 

_free_box (mpool, rptr); 

The following code shows how to put all this together.  First the initializing code 
that may be called before RTX is started. 

typedef struct  { 
   unsigned char ADresult [4]; 
   unsigned int  PORT0; 
} MESSAGE; 
 
unsigned int mpool [16 * sizeof (MESSAGE) / 4 + 3]; 
 
_declare_box (mpool, sizeof (MESSAGE), 16); 
 
main()  { 
   … 
   _init_box (mpool, sizeof (mpool), sizeof (MESSAGE)); 
   os_sys_init (Send_Task); 
   … 
} 
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A task sending a message: 

__task void Send_Task (void)  { 
   … 
   MESSAGE *mptr; 
   os_mbx_init (MsgBox, sizeof (MsgBox)); 
   tsk1 = os_tsk_self (); 
   tsk2 = os_tsk_create (Receive_Task, 0x1); 
 
   while (1)  { 
      mptr = _alloc_box (mpool);              // Acquire a mailbox 
      for (i=0; i < 4 ; i++)  { 
         Mptr->ADresult [i] = ADresult (i);   // Fill it with data 
         Mptr->PORT0 = IOPIN0; 
      } 
      os_mbx_send (MsgBox, mptr, 0xffff);     // Send the message 
   … 
   } 
} 

A task to receive the message: 

__task void Receive_Task (void)  { 
   … 
   MESSAGE *rptr; 
   while (1) { 
      os_mbx_wait (MsgBox, &rptr, 0xffff);  // Wait for a message arrives 
      pwm_value = *rptr->ADresult [0];      // Read the message data 
      _free_box (mpool, rptr);              // Free the mail slot 
      …                                     // Use the data in this task 
   } 
} 

Exercise:  Mailbox 
 
This exercise presents the minimum code to initialize a mailbox and then pass a 
formatted message between two tasks. 
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Task Lock and Unlock 
In a real application, it is often necessary to ensure that a section of code runs as 
a contiguous block, so that no interrupts occur while it is executing.  In an RTX-
based application, this cannot be guaranteed, as the scheduler is continually 
interrupting each task.  To ensure a continuous execution, you must use the task 
lock and task unlock system calls, which disable and re-enable the scheduler: 

tsk_lock (); 
   do_critical_section (); 
tsk_unlock (); 

The critical section of code must be kept to a minimum, as a long period with the 
scheduler disabled will disrupt the operation of the RTOS.  The source code for 
the tsk_lock() and tsk_unlock() functions on the OS_LOCK and OS_UNLOCK 
macros are located in the RTX_Config.c file and may be modified to meet any 
special requirements. 

Configuration 
So far, we have looked at the RTX API.  This includes task management 
functions, time management, and inter-task communication.  Now that we have a 
clear idea of exactly what the RTX kernel is capable of, we can take a more 
detailed look at the configuration file.  As mentioned at the beginning, you must 
select the correct RTX_Config.c for the microcontroller that you are using.  All 
supported microcontrollers have a pre-configured configuration file, so RTX only 
needs minimal configuration. 

Like the other configuration files, the RTX_Config.c file is a template file that 
presents all the necessary configurations as a set of menu options. 
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Task Definitions 
In the Task Definitions section, we define the basic resources that will be 
required by the tasks.  For each task, we allocate a default stack space (in the 
above example this is 200 bytes).  We also define the maximum number of 
concurrently running tasks.  Thus, the amount of RAM required for the above 
example can be calculated easily as 200 x 6 = 1,200 bytes.  If some of our tasks 
need a larger stack space, they must be started with the os_task create_usr() API 
call.  If we are defining custom stack sizes, we must define the number of tasks 
with custom stacks.  Again, the RAM requirement can be calculated easily. 

During development, RTX can be set up to trap stack overflows.  When this 
option is enabled, an overflow of a task stack space will cause the RTX kernel to 
call the os_stk_overflow() function that is located in the RTX_Config.c file.  This 
function gets the TASK ID of the running task and then sits in an infinite loop.  
The stack checking option is intended for use during debugging and should be 
disabled on the final application to minimize the kernel overhead.  However, it is 
possible to modify the os_stack_overflow() function, if enhanced error protection 
is required in the final release. 

The final option in the Task Definitions section allows you to define the number 
of user timers.  It is a common mistake to leave this set at zero.  If you do not set 
this value to match the number of virtual timers in use by your application, the 
os_timer() API calls will fail to work. 

For Cortex-based microcontrollers the Task Definitions section has one 
additional option.  Disabling the “run in privileged mode” tick box allows the 
RTOS kernel to run in Handler Mode with privileged access, while the user tasks 
run in Thread Mode with unprivileged access.  This means that the RTX kernel 
has full access to the microcontroller resources and its own stack space while the 
application code has limited access to the microcontroller resources.  For 
example, it cannot access the Cortex interrupt control registers.  This can be very 
useful for safety critical code where we may need to partition the user task code 
from the kernel code. 



Getting Started: Building Applications with RL-ARM 45 

System Timer Configuration 
The system timer configuration section defines which on-chip timer will be used 
to generate a periodic interrupt to provide a time base for the scheduler.  On 
ARM7 and ARM9-based microcontroller, you need to make use of a general-
purpose timer available in the silicon.  With a Cortex-based microcontroller, 
there is no need to select a timer, as the Cortex processor contains a dedicated 
SysTick timer, which is intended to be used by an RTOS.  In both cases, we must 
next define the input frequency to the timer.  For an ARM7 or ARM9-based 
microcontroller this will generally be the advanced peripheral bus frequency.  For 
a Cortex-MX-based microcontroller it will generally be the CPU frequency.  
Next, we must define our timer tick rate.  Timer interrupts are generated at this 
rate.  On each timer tick, the RTOS kernel will check for RTOS features 
(scheduler, events, semaphores, etc) and then schedule the appropriate action.  
Thus, a high tick rate makes the RTOS more sensitive to events, at the expense of 
continually interrupting the executing task.  The timer tick value will depend on 
your application, but the default starting value is set to 10ms. 

Round Robin Task Switching 
The final configuration setting allows you to enable round robin scheduling and 
define the time slice period.  This is a multiple of the timer tick rate, so in the 
above example, each task will run for five ticks or 50ms before it will pass 
execution to another task of the same priority that is ready to run.  If no task of 
the same priority is ready to run, it will continue execution. 

Scheduling Options 
RTX allows you to build an application with three different kernel-scheduling 
options.  These are: 

 Pre-emptive scheduling, 
 Round robin scheduling, and 
 Co-operative multi-tasking. 
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Pre-emptive Scheduling 
If the round robin option is disabled in the RTX_Config.c file, each task must be 
declared with a different priority.  When the RTOS is started and the tasks are 
created, the task with the highest priority will run. 

In a pre-emptive RTOS, each 
task has a different priority level 
and will run until it is pre-empted 
or has reached a blocking OS 
call. 

This task will run until it blocks, 
i.e. it is forced to wait for an 
event flag, semaphore, or other object.  When it blocks, the next ready task with 
the highest priority will be scheduled and will run until it blocks, or a higher 
priority task becomes ready to run.  Therefore, with pre-emptive scheduling we 
build a hierarchy of task execution, with each task consuming variable amounts 
of run time. 

Round Robin Scheduling 
A round-robin-based scheduling scheme can be created by enabling the round 
robin option in the RTX_Config.c file and declaring each task with the same 
priority. 

In a round robin RTOS tasks will 
run for a fixed period, or time 
slice, or until they reach a 
blocking OS call. 

In this scheme, each task will be 
allotted a fixed amount of run time before execution is passed to the next ready 
task.  If a task blocks before its time slice has expired, execution will be passed to 
the next ready task. 
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Round Robin Pre-emptive Scheduling 
As discussed at the beginning of this chapter, the default scheduling option for  
RTX is round robin pre-emptive.  For most applications, this is the most useful 
option and you should use this scheduling scheme unless there is a strong reason 
to do otherwise. 

Co-operative Multitasking 
A final scheduling option is co-operative multitasking.  In this scheme, round 
robin scheduling is disabled and each task has the same priority.  This means that 
the first task to run will run forever unless it blocks.  Then execution will pass to 
the next ready task. 

In a co-operative RTOS, each 
task will run until it reaches a 
blocking OS call or uses the 
os_tsk_pass() call. 

Tasks can block on any of the 
standard OS objects, but there is 
also an additional system call, os_task_pass(), that schedules a task to the 
READY state and passes execution to the next ready task. 

Priority Inversion 
Finally, no discussion of RTOS scheduling would be complete without 
mentioning priority inversion. 

A priority inversion is a common 
RTOS design error.  Here, a high 
priority task may become 
delayed or permanently blocked 
by a medium priority task. 

In a pre-emptive scheduling 
system, it is possible for a high 
priority task T1 to block while it 
calls a low priority task T3 to perform a critical function before T1 continues.  
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However, the low priority task T3 could be pre-empted by a medium priority task 
T2.  Now, T2 is free to run until it blocks (assuming it does) before allowing T3 
to resume completing its operation and allowing T1 to resume execution.  The 
upshot is the high priority task T1 that is blocked and that becomes dependent on 
T2 to complete before it can resume execution. 

os_tsk_prio (tsk3, 10);               // raise the priority of task3 
os_evt_set (0x0001, tsk3);            // trigger it to run 
os_evt_wait_or (0x0001, 0xffff);      // wait for Task3 to complete 
os_tsk_prio (tsk3, 1);                // lower its priority 

The answer to this problem is priority elevation.  Before T1 calls T3 it must raise 
the priority of T3 to its level.  Once T3 has completed, its priority can be lowered 
back to its initial state. 

Exercise:  Priority Inversion 
 
This exercise demonstrates a priority inversion and priority elevation. 
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Chapter 3.  RL-Flash Introduction 
This chapter discusses configuring and using the RL-Flash embedded file system.  
To many experienced developers of small embedded systems, the concept of 
using a file system may be considered something of a luxury.  However, 
technology has moved on, and, as we saw in the first chapter, ARM processor-
based microcontrollers now have the processing power to make using an RTOS 
practical.  They also have the memory resources to support the use of embedded 
file systems.  Adding a file system to a small-embedded system allows you to 
build applications that are far more complex. 

The file system can be used to store program data during deep power saving 
modes, or for holding program constants, or even for storing firmware upgrades 
for a bootloader.  In short, a file system is a new and extremely useful tool for 
developers of small, embedded systems. 

The RL-Flash file system allows you to place a file system in most common 
memory types including SRAM, Parallel Flash, Serial Flash, and SD/MMC 
cards.  In the case of SD/MMC cards, FAT12, FAT16, and FAT32 are supported.  
As we will see in later chapters, the file system can be accessed through the USB 
Mass Storage Class and through Ethernet with the Trivial File Transfer Protocol 
(TFTP).  This provides an easy and well-understood method of accessing your 
data.  Throughout this chapter, we will first discuss configuring a RAM-based 
file system that occupies the internal SRAM of a small microcontroller.  Then we 
will use this file system to review the ANSI file I/O functions available within 
RL-Flash.  In the remainder of the chapter, we will discuss configuring the file 
system for the remaining memory formats. 

Getting Started 
In this first section, we will look at configuring the file system to use the internal 
RAM of a typical ARM processor-based microcontroller.  Although this is not 
usually practical in real embedded systems, as all data would be lost once power 
is removed from the microcontroller, it does give us an easy starting point with 
which to practice our file handling skills. 
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Setting-Up the File System 
The RL-Flash file system can be used standalone or in conjunction with RTX.  
The file system library functions are re-entrant and thread safe.  Therefore, with 
RTX, any task can access the file system.  Note that, if the code is build with the 
MDK-ARM, MicroLIB is not supporting the stdlib functions used by the file 
system, and so you must use the default ARM Compiler libraries. 

The RL-Flash file system can use on-chip or external SRAM.  If an external 
SRAM is used, provide the initializing code to configure the external bus of the 
microcontroller.  In the examples below, we configure the file system to use the 
internal RAM of a typical microcontroller. 

The minimal configuration of the RL-FlashFS file 
system consists of its library and a configuration file.  
Set the project heap size to a minimum of 0x1000. 

Our first file system project consists of the startup code 
and the Retarget.c library support file.  Also, add the file 
system library FS_ARM_L.lib for ARM7/9-based devices 
and FS_CM3.lib for Cortex-M-based devices.  The files are 
located in the library directory, 
such as C:\KEIL\ARM\RV31\LIB for 
the 3.1 compiler version, where 
as File_Config.c is located in 
C:\KEIL\ARM\RL\FLASHFS\SRC.  
Once these files are part of the 
project, create a module, main.c 
that contains the source code.  
All the necessary configuration 
is done in the startup code and 
the File_Config.c file. 
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The file system buffers data in dynamically allocated memory, so we must 
reserve heap space in the startup code.   

In File_Config.c, enable the drive type we 
want to use and set its parameters.  If 
several drives are used, a default drive 
can also be defined.  It is possible to 
enable the file system volumes and place 
them on different physical media, 
including internal/external parallel Flash 
memory, SPI EEPROM, internal or 
external parallel SRAM, and MultiMedia/SD memory cards.  When configured, 
each drive has a default drive letter as shown in the table. 

We will discuss each of these formats in turn, but for now we will define a file 
system in on-chip RAM.  This is quick and simple to configure and can be 
debugged in both real target hardware via a ULINK® USB-JTAG Adapter and in 
simulation.  Once the project has been defined and all of the modules have been 
added, we simply need to configure the base address of the file system in RAM, 
its size in memory and the number of sectors.  The file system may be located in 
any valid region of RAM and has a minimum size of 16K.  The number of 
sectors that you have depends on how you intend to use the file system.  If you 
intend to have a small number of large files, then select a small sector number.  
If, on the other hand, you expect to create a large number of small files, then 
select a large number of sectors.  You can select between 8, 16, 32, 64, and 128 
sectors per volume drive.  Once configured, we can add the necessary code to 
initialize the volume for use within our application code. 

if (fcheck ("R:") != 0)  {            // check for a formatted drive 
   if (fformat ("R:") != 0)  {        // format the drive 
      …                               // error handling code 
   } 
} 

The fcheck() function can be used to determine if there is a valid formatted 
volume present.  The fformat() function can be used at any time to 
format/reformat the drive.  After formatting all the drive memory contents will be 
set to 0x00. 

Exercise:  First File System 
 
This first file system project guides you through setting up a RAM-based file 
system.  This can run on real hardware or within the µVision Simulator. 
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File I/O Routines 
Once the file system has been configured, we can manipulate files. 

Function Description 

fopen Creates a new file or opens an existing file. 
fclose Writes buffered data to a file and then closes the file. 
fflush Writes buffered data to a file. 

To create a file, open a file on the volume and define a handler to it.  This 
handler, with which we can read and write to the file, is a pointer to the open file. 

#include <stdio.h> 
FILE *Fptr; 

Include the stdio.h library to define our file handler as type FILE.  Next, create a 
file and check that it has opened.  fopen() requires a string for the file name and 
an access attribute, which can be “w” write, “a” append, or “r” read. 

Fptr = fopen ("Test.txt","w"); 

If the file cannot be created or opened, a NULL pointer is returned. 

if (Fptr == NULL)  { 
   …;                         // error handler 
} 

Once you have finished using the file, you must close it by calling fclose().  Up to 
this point, all data written to the file is buffered in the heap space.  When you 
close the file, the data is written to the physical storage media.  Consider this 
carefully if you have multiple file streams or are storing large streams of data. 

fclose (Fptr); 

Once we have created a file, a number of functions help us work with it. 

Function Description 

feof Reports whether the end of the file stream has been reached. 
ferror Reports whether there is an error in the file steam. 
fseek Moves the file stream in pointer to a new location. 
ftell Gets the current location of the file pointer. 
rewind Moves the file stream in file pointer to the beginning of the file. 
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feof() returns zero until the end of file is reached.  Notice, it is possible to read 
past the end of a file.  While reading or writing data, ferror() reports access errors 
in the file stream.  Once an error has occurred, ferror() returns the error code 
until the file is closed, or until the file pointer is rewound to the start of the file.  
fseek(), ftell(), and rewind() position the file pointer within the file.  fseek() 
moves the file pointer to a location within a file.  This location is defined relative 
to an origin, which can be the start or the end of the file, or the current file 
pointer position.  ftell() reports the current location of the file pointer relative to 
the beginning of the file.  rewind() places the file pointer at the start of the file. 

rewind (Fptr);             // Place file-pointer at the start of file 
fseek (Fptr, 4, SEEK_CUR); // Move 4 chars forward rel. to the FP location 
location = ftell (Fptr);   // Read the file pointer location 

Four standard functions exist to write data to a file stream in byte, character, 
string, or formatted output format.  Similarly, four analogous functions exist to 
read data. 

Function Description 

fwrite Writes a number of bytes to the file stream. 
fputc Writes a character to the file stream. 
fputs Writes a string to the file stream. 
fprintsf Writes a formatted string to the file stream. 
fread Reads a number of bytes from the file stream. 
fgetc Reads a character from the file stream. 
fgets Reads a string from the file stream. 
fscanf Reads a formatted string from the file stream. 

 

while (!feof (Fptr))  { 
   byte = fgetc (Fptr); 
   if (ferror (Fptr))  { 
      …;                   // Error handling 
   } 
} 

Exercise:  File Handling 
 
This project contains several examples, which demonstrate creating files, 
reading and writing data, and managing the data within a file. 
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Volume Maintenance Routines 
As you create and update files, it is important to maintain the health of the drive.  
A number of functions maintain the volume and manipulate the content of the 
drive.  The file system provides five drive and three file maintenance functions. 

Function Description 

fformat Formats the drive. 
fcheck Checks the consistency of the drive. 
ffree Reports the free space available in the drive. 
fanalyse Checks the drive for fragmentation. 
fdefrag Defragments the drive. 

We have already used the fcheck() and fformat() functions.  The additional drive 
maintenance functions include ffree() that will report the available free disk space 
and fanalyse() that can be used to check the fragmentation level of a selected 
drive.  This function returns a value 0 – 255 to indicate the current level of drive 
fragmentation.  Once a drive becomes too fragmented, the fdefrag() function may 
be used to reorganize the volume memory and maximize the available space. 

if (ffree ("R:") < THRESHOLD)  {   // When free space reaches a minimum 
   if (fanalyse ("R:") > 100)  {   // Check the fragmentation  
      fdefrag ("R:");              // If necessary defrag the drive 
   } 
} 

Function Description 

fdelete Deletes a selected file. 
frename Renames a selected file. 
ffind Locates files by name or extension. 

Three functions are also provided to allow you to manage the files stored within 
the drive volume.  The functions frename() and fdelete() allow you to rename and 
delete a selected file within a chosen drive. 

frename ("R:Test1.txt", "New_Test.txt");      // Rename file 
fdelete ("R:Test2.txt");                      // Delete file 

You can also search the contents of the drive with the ffind() function.  This will 
find files that match a specified pattern.  When a file is found, its details are 
reported in a structure called info. 
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//Create a file to store the directory listing 
FINFO info; 
Fptr = fopen ("directory.log", "w"); 
 
while (ffind ("R:*.*", &info) == 0) {        // Search drive for all files 
  fprintf (Fptr, "\nname %s %5d bytes ID: %04d",  
           info.name, info.size, info.fileID); 
} 
 
fclose (Fptr); 

In addition to containing records for file details, the FINFO structure also 
contains fields to hold a timestamp of the creation time or modification time of 
the file. 

typedef struct  {     // Search info record  
  S8  name [256];     // Name                               
  U32 size;           // File size in bytes                 
  U16 fileID;         // System Identification              
  U8  attrib;         // Attributes                         
  struct  { 
    U8  hr;           // Hours    [0..23]                   
    U8  min;          // Minutes  [0..59]                   
    U8  sec;          // Seconds  [0..59]                   
    U8  day;          // Day      [1..31]                   
    U8  mon;          // Month    [1..12]                   
    U16 year;         // Year     [1980..2107]              
  } time;             // Create/Modify Time                 
} FINFO; 

The time and calendar information is provided through two functions held in the 
file fs_time.c. 

U32 fs_get_time (void); 
U32 fs_get_date (void); 

If you want to use time and date information within your application, you must 
modify these two functions to access the real-time clock on your microcontroller.  
You must also add the code to initialize the real-time clock.  The file fs_time.c is 
located in C:\KEIL\ARM\RL\FLASHFS\SRC.  You can rebuild the library with the 
project in C:\KEIL\ARM\RL\FLASH to provide a custom library for your application.  
When rebuilding the library, be careful to select either the ARM_LE (ARM7/9 
Little-Endian) or Cortex as the target.  The fs_time.c functions are not supported if 
you are using a RAM-based file system. 

Exercise:  Drive Functions 
 
This project contains several examples, which demonstrate maintaining and 
working with a drive volume. 
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Flash Drive Configuration 
Although a RAM-based file system can be battery-backed, or can be used to store 
temporary files during the run time of an application, we usually think of a file 
system as having non-volatile storage.  To this end, we can configure the file 
system to use the internal Flash memory of a microcontroller, or external parallel 
Flash, which is memory-mapped onto the microcontroller’s external bus. 

First, modify the File_Config.c file.  
This time select the Flash drive 
as the target drive.  Once 
selected, we must define the 
start.  Next, configure the target 
base address and drive size.  This 
should map onto the Flash 
sectors of the microcontroller’s 
memory.  Next, we must add the 
programming algorithms for the internal Flash memory.  These algorithms are 
defined for supported microcontrollers and are located in 
C:\KEIL\ARM\RL\FLASHFS\FLASH. 

Each subdirectory contains the necessary support files for a given microcontroller 
or parallel Flash device.  Each of these directories contains FS_FlashDev.h and 
FS_FlashPrg.c.  Copy these files to your project directory and add FS_FlashPrg.c to 
your project.  If there is no direct support for your particular microcontroller, do 
not be concerned; we will look at developing Flash drivers next. 

To use parallel Flash as a file system we 
must add two new files: 

1. The FS_Flash.h include file that contains a 
mapping of the physical Flash sectors. 

2. The Flash_page.c file that contains the low 
level Flash write and erase routines. 

The file FS_FlashPrg.c provides the necessary Flash programming algorithm and 
FS_FlashDev.h provides the mapping to the physical Flash sectors.  The FlashDev.h 
file maps all of the available Flash sectors to the file system by default.  We must 
modify this file to map only the sectors that are actually being used by our file 
system. 
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// Flash sector definitions in Flash_Page.c 
// 
#define FLASH_DEVICE         \ 
  DFB (0x008000, 0x000000),  \       /* Sector size, Start address */ 
  DFB (0x008000, 0x008000),  \       /* Sector size, Start address */ 
#define FL_NSECT 2        

 
// File_Config.c as displayed as in the µVision Configuration Wizard  
// 
Traget device Base address  0x0000 8000 
Device Size in bytes        0x0001 0000                       

Each physical Flash sector used by the file system must be included in the 
FLASH_DEVICE definition.  Each sector definition includes the size of the 
sector and its address as an offset from the target device base address that is set in 
file config.h.  In the example above we are defining a file system located at the 
32KB boundary of size 64KB.  In the physical Flash memory on the 
microcontroller, this occupies two Flash sectors each of 32KB.  Finally, we must 
set the FL_NSECT define to the number of physical Flash sectors used by the file 
system in this case two. 

Once you have added these files to your project and made the necessary 
configuration changes, the Flash file system is ready to use.  The function calls 
that we used for the RAM-based system work in exactly the same way for the 
Flash-based system.  Before using the Flash-based file system, the application 
code must call finit() before performing any other file system operations. 

void main (void)  { 
   finit (); 
   ... 
} 

Exercise:  Flash File System 
 
This exercise demonstrates how to locate a file system in the internal Flash 
memory of an ARM processor-based microcontroller. 
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Adapting Flash Algorithms for RL-Flash 
If RL-Flash does not provide direct support for your microcontroller or the 
parallel Flash on your board, it is possible to adapt the programming algorithms, 
used by the Keil ULINK USB-JTAG adapter family, to use them as drivers for 
the Flash file system.  The ULINK family Flash programming algorithms are 
located in C:\KEIL\ARM\FLASH. 

For each microcontroller, the ULINK programming algorithms are included in 
two files: FlashPrg.c and FlashDev.c.  Copy these files to a new directory and 
rename FlashPrg.c to FS_FlashPrg.c. 

This file contains the basic low-level programming algorithm required by the file 
system.  To make the programming algorithms compatible with the file system 
you must make the following changes.  First, change the include file name from: 

   #include "..\FlashOS.H"  
to #include <File_Config.h>. 

Next, rename the following functions: 

from int Init (unsigned long adr, unsigned long clk, unsigned long fnc)  
to   int fs_Init (U32 adr, U32clk), 

from int EraseSector (unsigned long adr) 
to   int fs_EraseSector (U32 adr), 

and 
int  ProgramPage (unsigned long adr, unsigned long sz, unsigned char *buf) 
to   int fs_ProgramPage (U32 adr, U32 sz, U8 *buf). 

Finally, delete the functions UnInit() and EraseChip(). 

Depending on the underlying Flash technology, you may need to modify the 
program page function.  This will depend on the write granularity of the Flash 
memory.  Generally, you can use the program page function without 
modification if the Flash memory can be written with a word at a time.  
However, you will need to add the packed attribute to the data buffer to allow for 
unaligned buffer access.  Change 

    M16 (adr) = *((unsigned short *) buf); 
to  M16 (adr) = *((__packed unsigned short *) buf); 

If the write granularity of the Flash memory is larger than a word, i.e. the Flash 
memory has a minimum write page size of 128 bytes, it will be necessary to 
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provide some extra code to manage the Flash page size.  Typically, this code has 
to read the current data stored in the Flash page, concatenate this with the new 
data stored in the file system buffer, and then write the updated page to the Flash 
memory.  The code below can be used as a starting point for such a device. 

#define PAGE_SZ 1024                               // Page Size 
U32 Page [PAGE_SZ/4];                              // Page Buffer 
 
int fs_ProgramPage (U32 adr, U32 sz, U8 *buf)  { 
  unsigned long i; 
 
  for (i = 0; i < ((sz+1)/2); i++)  { 
    M16 (adr & ~3) = CMD_PRGS;           // Write Program Set-up Command 
    M16 (adr) = *((__packed unsigned short *) buf); // Write 2 byte data 
    if (WaitWithStatus(adr & ~3) & (PS | SP))       // Unsuccessful 
      return (1); 
    buf += 2; 
    adr += 2; 
  } 
  
  return (0);                                      // Done successfully 
} 

In addition to the programming algorithms, you will need to define the Flash 
sector definitions in FS_FlashDev.h. 

The file FlashDev.c contains the sector definitions for the ULINK programming 
algorithms, so you can use this as a basis for the FS_FlashDev.h file or alternatively 
you can modify an existing FS_FlashDev.h file.  Either way the FlashDev.h file must 
conform to the format described above. 

If you are using the internal microcontroller Flash memory, you should locate the 
file system into a region where there are multiple small sectors, as this will 
reduce the amount of erasing and buffering required.  Also, since the RL-Flash 
file system does not support wear leveling, you must bear in mind an estimated 
number of writes to the file system over the life time of the final product.  
Typically, microcontroller Flash memory is rated at 100K write cycles.  If you 
are likely to exceed this, you should consider using an SD/MMC card since these 
formats support wear leveling in hardware. 



60 Chapter 3.  RL-Flash Introduction 

     

MultiMedia Cards 
The easiest way to add a large amount of low cost data storage to a small 
microcontroller system is through a Secure Digital (SD) or Multi Media Card 
(MMC).  These cards are available in ever increasing densities at ever lower 
prices.  Although they are available from a wide range of manufacturers, the 
cards conform to a standard specification that defines the interface protocol 
between the microcontroller and the memory card.  The SD and MMC protocols 
allow the microcontroller to communicate in a serial SPI mode at 25KBytes/sec 
or through a 4-bit-wide bus at 100KBytes/sec.  In order to use the memory card 
in parallel mode, the microcontroller must have a dedicated Multimedia Card 
Interface (MCI) peripheral.  If this is the case, a dedicated driver for supported 
microcontrollers is provided in C:\KEIL\ARM\RL\FLASHFS\DRIVERS. 

Simply select the appropriate MCI driver and add this to your project as shown 
below: 

To configure RL-Flash to use an SD\MM card add the MCI or SPI driver for 
your microcontroller and configure File_Config.c to use the memory card.  In 
File_Config.c we must enable the memory card and select it as the default drive.  It 
is possible to configure the memory card based file system to use an additional 
cache of RAM within the microcontroller.  This can be from 1K up to 32KBytes 
in size.  It is really only necessary to enable this option if you are using a 
dedicated MCI peripheral.  With the cache enabled, the MCI peripheral is able to 
perform multiple sector writes and multiple sector reads.  If you are using an SPI 
peripheral to communicate with the SD/MMC card, you will not get any 
significant performance gains with the cache enabled.  The RL-Flash makes use 
of the Direct Memory Access (DMA) peripherals within supported 
microcontrollers to stream data to and from the SD/MMC card.  If the DMA is 
limited to certain regions of memory, the “relocate buffer cache” option allows 
you to force the file buffer cache into a suitable region.  Do check that this is 
correct for your particular microcontroller. 
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From this point onwards, the file system API can be used as normal.  However, 
as we are communicating with an external memory card, which may have some 
timing latencies, it may fail the finit() call.  To ensure that the file system always 
initializes correctly, it is advisable to allow for retries as shown below. 

count = 3; 
while (finit() != 0)  { 
  if (!(count--))  { 
    errorflag = 1; 
    break; 
  } 
} 

By default, the file system uses the FAT16 file format.  It is possible to enable 
FAT32 support for SD/MMC-based file systems.  A memory card can be 
formatted with a FAT32 file system as follows: 

fformat ("M:SD_CARD / FAT32"); 

A full erase of the card can also be performed during a format as follows: 

fformat ("M:SD_CARD / WIPE"); 

If your microcontroller does not have a dedicated MCI peripheral, then it is 
possible to configure the file system library to communicate with the memory 
card in SPI mode.  SPI driver files are provided in the same file system drivers’ 
directory.  You simply need to add the SPI driver in place of the MCI driver, in 
order to configure your microcontroller to access the memory card in SPI mode. 

Exercise:  MMC-Based File System 
 
This project demonstrates configuration of a memory-card-based file system, 
using either a dedicated MCI peripheral or SPI interface. 
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Serial Flash 
The file system can also be placed on a serial 
Flash connected to the SPI port.  The same 
SPI drivers used for the memory card can be 
reused to provide low-level access to the 
Flash memory.  However, unlike the 
SD/MMC memory, there is no common 
communication protocol.  Therefore, we 
need to provide an intermediate driver that 
provides the necessary protocol commands to communicate with the SPI 
memory. 

The protocol file is very similar to the parallel Flash driver files and can be found 
in C:\KEIL\ARM\RL\FLASHFS\FLASH. 

Here select the directory named after the Flash device you intend to use and copy 
the contents to your project directory.  The files contained in the device directory 
are: FS_SPI_FlashDev.h and FS_SPI_FlashPrg.c. 

The FS_SPI_FlashDev.h file contains a description of the physical Flash sectors and 
the FS_SPI_FlashPrg.c module contains the erase and programming algorithms 
customized to the Flash device.  The functions in the FS_SPI_FlashPrg.c file 
communicate with the SPI device through the low-level SPI drivers.  However, 
an additional simple function is required to control the SPI slave select line.  
Since the implementation of this function will depend on the microcontroller you 
are using and your hardware layout, you will need to implement this function 
yourself.  The pseudo-code for this function is shown below. 

void spi_ss (U32 ss)  { 
   if (ss)  { 
      Set Slave select high 
   } else { 
      Set Slave select low 
   } 
} 



Getting Started: Building Applications with RL-ARM 63 

Chapter 4.  RL-TCPnet Introduction 
One of the key middleware components in the RL-ARM library is the RL-
TCPnet networking suite.  RL-TCPnet has been specifically written for small, 
ARM-based, embedded microcontrollers, is highly optimized, has a small code 
footprint, and gives excellent performance.  In this chapter, we will first review 
the TCP/IP protocol and then examine each feature of RL-TCPnet.  Each of the 
exercises accompanying this chapter show minimal examples intended to 
demonstrate one aspect of RL-TCPnet.  Full examples can be found in the board 
examples directory C:\KEIL\ARM\BOARDS\<vendor>\<board name>\RL\TCPNET.  The 
code size for each of these programs is as follows: 

Demo Example ROM Size (KB) RAM Size (KB) 

HTTP Server (without RTX Kernel) 25.6 20.0 
Telnet Server 20.4 20.0 
TFTP Server 20.6 24.7 
SMTP Server 16.7 19.5 
DNS Resolver 12.7 19.6 

TCP/IP – Key Concepts 
TCP/IP is a suite of protocols designed to support local and wide area 
networking.  In order to build a TCP/IP based application you do not need to 
fully understand all the protocols within the TCP/IP stack.  However, you do 
need to understand the basic concepts in to configure your system correctly. 

Network Model 
The TCP/IP network model is split into four layers that map on to the ISO seven-
layer model as shown below. 

The network access layer consists of: 

 the physical connection to the network. 
 the packetizing of the application data for the underlying network. 
 the flow control of the data packets over the network. 
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In a typical microcontroller-based system, this layer corresponds to the Ethernet 
MAC with PHY chip and the low-level device driver.  The TCP/IP stack handles 
the transport and network routing layers. 

The network layer handles the transmission of data packets between network 
stations using the Internet Protocol (IP).  The transport layer provides the 
connection between application layers of different stations.  Two protocols; the 
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP) 
handle this.  The application layer provides access to the communication 
environment from your user application.  This access is in the form of well-
defined application layer protocols such as Telnet, SMTP, and HTTP.  It is 
possible to define your own application protocol and communicate between 
nodes using custom TCP and UDP packets. 

The main three protocols used to transfer application data are: the Internet 
Protocol (IP), the Transmission Control Protocol (TCP), and the User Datagram 
Protocol (UDP).  A typical application will also require the Address Routing 
Protocol (ARP) and Internet Control Message Protocol (ICMP).  In order to 
reduce the size of a TCP/IP implementation for a small microcontroller, some 
embedded stacks only implement a subset of the TCP/IP protocols.  Such stacks 
assume that communication will be between a fully implemented stack, i.e. a PC 
and the embedded node.  The RL-TCPnet is a full implementation that allows the 
embedded microcontroller to operate as a fully functional internet station. 
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Ethernet and IEEE 802.3 
Today’s most dominant networking transport layer for local area networks is 
Ethernet (or rather Ethernet II to be exact).  The Ethernet header contains a 
synchronization preamble, followed by source and destination addresses and a 
length field to denote the size of the data packet. 

The Ethernet data frame is the transport mechanism for TCP\IP data over a Local 
Area Network. 

The data in the information field must be between 46 and 1500 octets long.  The 
final field in the data packed is the Frame Check Sequence, which is a Cyclic 
Redundancy Check (CRC).  This CRC provides error checking over the packet 
from the start of the destination address field to the end of the information field. 

TCP/IP Datagrams 
In Ethernet networks, the Ethernet data packet is used as the physical 
transmission medium and several protocols may be carried in the information 
section of the Ethernet packet.  For sending and receiving data between nodes, 
the information section of the Ethernet packet contains a TCP/IP datagram. 

The Layer2 frame (Ethernet) encapsulates the TCP/IP datagrams. 

Internet Protocol 
The Internet Protocol is the basic transmission datagram of the TCP/IP suite.  It 
is used to transfer data between two logical IP addresses.  On its own, it is a best-
effort delivery system.  This means that IP packets may be lost, may arrive out of 
sequence, or may be duplicated.   

There is no acknowledgement to the sending station and no flow control.  The IP 
protocol provides the transport mechanism for sending data between two nodes 
on a TCP/IP network.   
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The IP protocol supports 
message fragmentation and re-
assembly; for a small, embedded 
node, this can be expensive in 
terms of RAM used to buffer 
messages.  The IP protocol rides 
within the Ethernet information 
frame as shown below. 

The Internet Protocol datagram 
provides station-to-station 
delivery of data, independent of 
the physical network.  It does not 
provide an acknowledge or 
resend mechanism. 

The Internet Protocol Header contains a source and destination IP address.  The 
IP address is a 32-bit number that is used to uniquely identify a node within the 
internet.  This address is independent of the physical networking address, in our 
case the Ethernet station address.  In order for IP packets to reach the destination, 
a discovery process is required to relate the IP address to the Ethernet station 
address. 

Address Resolution Protocol 
The Address Resolution Protocol (ARP) is used to discover the Ethernet address 
of a station on a local network and relate this to the IP address.  ARP can be used 
on any network that can broadcast messages.  The ARP has its own datagram that 
is held within the Ethernet frame. 

The ARP protocol provides a 
method of routing IP messages 
on a LAN.  It provides a 
discovery method to link a 
station Ethernet MAC address to 
its IP address. 

When a station needs to discover 
the Ethernet address of a remote 
station, it will transmit a 
broadcast message that contains 
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the IP address of the remote station.  The broadcast message also contains the 
local station’s Ethernet address and its IP address.  All the other nodes on the 
network will receive the ARP broadcast message and can cache the sending 
node’s IP and station address for future use.  All of the receiving stations will 
examine the destination IP address in the ARP datagram and the station with the 
matching IP address will reply back with a second ARP datagram containing its 
IP address and Ethernet station address.  

This information is cached by the sending node (and possibly all the other nodes 
on the network).  Now, when a node on the LAN wishes to communicate to the 
discovered station, it knows which Ethernet station address to use to route the IP 
packet to the correct node.  If the destination node is not on the local network, the 
IP datagram will be sent to the default network gateway address where it will be 
routed through the wide area network. 

Subnet Mask 
A local area network is a defined subnet of a network.  Often it uses a specific IP 
address range that is defined for use as a private network (for example 
192.168.0.xxx).  The subnet mask defines the portion of the address used to 
select stations within the local network. 

The subnet mask is used to 
define the station address range 
for the local area network. 

The subnet mask defines the 
network address bits that form 
the identity of the local network.  
The remaining IP address bits 
can be used to assign the address 
of nodes on the local network.  
By using the subnet mask to 
determine the identity of the 
local network, any IP datagrams not destined for the local network are forwarded 
through the network gateway and then routed through the wider internet.  Within 
a LAN, each network station must have the same subnet mask and a unique IP 
address.  These settings may be configured manually on each station.  It is 
possible to configure the subnet and IP address automatically using a dedicated 
protocol. 
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Dynamic Host Control Protocol DHCP 
The DHCP supports automatic allocation of IP addresses and configuration of the 
subnet mask within a LAN.  A DHCP server must be present within the LAN.  
This can run on any station and listens on port 67.  When a new station is added 
to the network, it will request its network configuration from the DHCP server 
before it becomes an active station within the network.  The DHCP request 
process consists of four stages: discovery, offer, request, and acknowledgement. 

An Ethernet station can be assigned automatically an IP 
address by a DHCP server.  This process consists of four 
stages, discovery, offer, request, and acknowledge. 

To discover the DHCP server, the new station sends a 
UDP broadcast packet with address 255.255.255.255.  
When the DHCP receives the DHCP discovery packet, it 
will reply back to the new station using the Ethernet 
MAC address contained within the discovery broadcast.  
In this packet, the DHCP server offers the new station an 
IP address.  To accept this IP address the new station 
replies back with a second broadcast packet.  The DHCP 
server will send a final acknowledgment packet that 
contains the remaining network configuration 
information and the lease duration of the IP address. 

Internet Control Message Protocol 
The Internet Control Message Protocol (ICMP) is mainly used to report errors 
such as an unreachable destination or an unavailable service within a TCP/IP 
network.  ICMP is the protocol used by the PING function that is used to check if 
a node exists on a network.  The Internet Control Message Protocol must be 
implemented in a TCP/IP stack.  However, in most embedded stacks only the 
PING Echo reply is implemented. 
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Transmission Control Protocol 
The Transmission Control 
Protocol is designed to ride 
within the IP datagram data 
payload. 

The IP packet provides the 
transport mechanism across 
various networks.  The TCP 
datagram provides the logical 
connection between computers 
and the application software.  
The TCP can be described as 
making a logical circuit between 
two applications running on 
different computers.  The 
Internet Protocol uses the address of the destination computer.  TCP uses a 
source and a destination port, and provides error-checking, fragmentation of large 
messages, and acknowledgement to the sender.  The TCP acknowledgement and 
retransmission mechanism uses a “sliding window” method.  These calls for 
multiple buffers to hold data that may need to be re-transmitted.  It is expensive 
in both processing power and user RAM, so it is quite a challenge when 
implementing a small TCP/IP stack. 

The TCP protocol is transported by the IP protocol 
and provides the connection to an application on a 
remote station.  It supports fragmentation of data 
packets, acknowledgement, and resending of lost 
error packets. 

The TCP port number associates the TCP data with 
target application software.  The standard TCP/IP 
application protocols have “well-known ports” so that 
remote clients may easily connect to a standard 
service.  The device providing the service can open a 
TCP port and listen on this port until a remote client 
connects.  The client is then assigned a port on which 
to receive data from the server.  This port is known as 
an ephemeral port as its assignment only lasts for the duration of the 
communication session between the server and client. 
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User Datagram Protocol 
Like the Transmission Control Protocol, the User Datagram Protocol rides within 
the data packet of the Internet Protocol.  Unlike TCP, UDP provides no 
acknowledgement and no flow control mechanisms.  UDP can be defined as a 
best effort, connectionless protocol and is intended to provide a means of 
transferring data between application processes with minimal overhead. It 
provides no extra reliability over the Internet Protocol. 

Like the Transmission Control Protocol, the User 
Datagram Protocol is transported by the Internet 
Protocol.  Unlike TCP, UDP is a simple, low 
overhead protocol that provides an easy method of 
communication to a remote application. 

Although delivery of data cannot be guaranteed 
with UDP, its simplicity and ease of use make it the basis of many important 
application protocols such as Domain Name Server (DNS) resolving and Trivial 
File Transfer Protocol (TFTP). 

Sockets 
A socket is the combination of an IP address and a port number.  In RL-TCPnet, 
support is provided for the most useful TCP/IP-based applications such as web 
server, using the Hypertext Transfer Protocol (HTTP) and e-mail, which is 
implemented with the Simple Mail Transfer Protocol (SMTP).  This means that 
you do not need to control individual connections.  However, if you do wish to 
generate your own custom TCP or UDP frames, a low-level sockets library is 
also provided.  If you intend designing your own protocol you will need to decide 
between UDP or TCP frames.  UDP is a lightweight protocol that allows you to 
send single frames.  It does not provide any kind of acknowledgement from the 
remote station.  If you want to implement a simple control protocol that will 
manage its own send and receive packets then use UDP.  TCP is a more 
complicated protocol that provides a logical connection between stations.  This 
includes acknowledgement and retransmission of messages, fragmentation of 
data over multiple packets and ordering of received packets.  If you need to send 
large amounts of data between stations or need guaranteed delivery then use 
TCP. 



Getting Started: Building Applications with RL-ARM 71 

First Project - ICMP PING 
In order to understand how RL-TCPnet works, we will make a simple example 
that connects a microcontroller to a LAN.  We can then check that it is working 
by using the Internet Control Message Protocol (ICMP) to PING the board. 

The PING project consists 
of the startup code and a 
module main.c to hold our 
source code.  We must then 
add the RL-TCPnet library.  
Next, add the configuration 
file Net_Config.c and the 
low-level Ethernet driver 
EMAC.c.  RL-TCPnet comes with fully configured 
Ethernet drivers for a wide range of ARM processor-based microcontrollers. 

The configuration file can be found in C:\KEIL\ARM\RL\TCPNET\SRC.  The Ethernet 
drivers for supported devices are located in C:\KEIL\ARM\RL\TCPNET\DRIVERS. 

The net_config.c is a template file that allows us to quickly and easily enable the 
RL-TCPnet features that we want to use.  For this project, we need to define the 
basic network parameters.  We can enter a fixed IP address, subnet mask, 
network gateway, and DNS servers in the same way that we would configure a 
PC for a LAN. 

The RL-TCPnet also supports DHCP.  If DHCP is enabled, the microcontroller 
retrieves its IP, subnet, gateway and DNS addresses from a DHCP server on the 
local network. 

Whether we use fixed IP addresses or retrieve them from the DHCP server, we 
must provide an Ethernet Media Access Controller (MAC) address.  This is the 
station address for the Ethernet network and it must be unique.  During 
development, you can use a “made up number”, but when you produce a real 
product, it must contain a unique MAC address.  This is discussed in more detail 
at the end of this chapter. 
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RL-TCPnet also supports the NetBIOS Frames Protocol.  If this is enabled, we 
can provide our node with a NetBIOS local host name as well as an IP address. 

Finally, we must enable the TCP and UDP protocols.  The ICMP just uses UDP, 
but as we will be using other application protocols that do use TCP, we will 
enable both here. 
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Once the RL-TCPnet library has been configured, we need to add the following 
code to our application code. 

void timer_poll ()  { 
 
  if (100mstimeout)  { 
    timer_tick ();              // RL-TCPnet function 
    tick = __TRUE; 
  } 
} 

int main (void)  { 
 
  timer_init (); 
  init_TcpNet (); 
  while (1)  { 
    timer_poll (); 
    main_TcpNet (); 
  } 
} 

The main while loop must be a non-blocking loop that makes a call to the RL-
TCPnet library on each pass.  In addition, we must provide a timer tick to the RL-
TCPnet library.  This must use a hardware timer to provide a periodic timeout 
tick.  The tick period should be around 100ms.  If you need a different tick rate, 
you should reconfigure the timer and change the timer tick interval in 
Net_Config.c. 

Once configured, the project can 
be built and downloaded into the 
microcontroller so that we can 
test it on a real LAN. 

Exercise:  PING Project 
 
This project demonstrates how to configure the RL-TCPnet library to create a 
minimal TCP/IP station. 
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Debug Support 
There are two available versions 
of the RL-TCPnet: a release 
version and a debug version.  
The debug version uses the 
printf() function to output 
network debug messages, which 
can be used during development.  
By default, the printf() function 
uses a debug UART as a 
standard I/O channel by calling 
the low level driver sendchar(). 

To use the debug version of the library, you must ensure that the UART is 
configured and suitable sendchar() code is provided.  It is also important to 
remember that the sendchar() routine is typically configured to operate in a 
polled mode.  This will provide a significant overhead to the operation of the RL-
TCPnet library.  A heavily loaded LAN will generate many debug messages that 
may in turn cause the RL-TCPnet library to fail. 

Exercise:  PING with Debug 
 
This example presents the PING project with the RL-TCPnet debug features 
enabled. 

Using RL-TCPnet with RTX 
Although RL-TCPnet can be used as a standalone C 
library, it is also possible to use it with RTX. 

When RTX is started, call the init_TCPnet() 
function, then create 
a task for the TCP 
timer tick.  Then we 
need to create a 
second task to call 
the RL-TCPnet 
library. 
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void init (void) __task  { 
   init_TcpNet (); 
   os_tsk_create (timer_task, 30); 
   os_tsk_create_user (tcp_task, 0, &tcp_stack, sizeof (tcp_stack)); 
   os_tsk_delete_self (); 
} 

Since the TCP task has a greater memory requirement than most user tasks, it 
must be defined with a custom stack space.  The tcp_stack is defined as shown 
below: 

U64 tcp_stack [800/8]; 

The timer tick is controlled in its own task.  This task is given a high priority and 
is set to run at intervals of 100msec. 

__task void timer_task (void)  { 
   os_itv_set (10); 
   while (1)  { 
      timer_tick (); 
      os_itv_wait (); 
   } 
} 

The main tcp_task calls the RL-TCPnet library and then passes execution to any 
other task that is in the READY state.  Since this task has no RTX system calls 
that will block its execution, it is always ready to run.  By making it the lowest 
priority task in your application, it will enter the RUN state whenever the CPU is 
idle. 

__task void tcp_task (void)  { 
   while (1)  { 
      main_TcpNet (); 
      os_tsk_pass (); 
   } 
} 

Exercise:  PING With RTX 
 
This exercise demonstrates the PING project built using RTX. 
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RL-TCPnet Applications 
RL-TCPnet supports a number of standard internet applications.  These include 
trivial file transfer (TFTP), web server (HTTP), email client (SMTP), telnet, and 
domain name server (DNS) client.  In RL-TCPnet, each of these applications is 
quick and easy to configure, as we shall see in the next section. 

Trivial File Transfer  
RL-TCPnet includes code to implement a TFTP server.  As its name suggests, 
TFTP is a simple protocol that was developed originally to transfer program 
images into remote devices such as internet routers and diskless terminals.  In 
comparison, FTP is intended to transfer large files across the internet.  The TFTP 
protocol is much more suitable for a small, embedded system.  Compared to FTP, 
it also uses a very small amount of resources. 

Adding the TFTP Service 
Of all the applications supported 
by RL-TCPnet, the TFTP server 
is the simplest to configure.  The 
TFTP server is designed to 
integrate with the RL-Flash file 
system.  It works with any media 
type available to RL-Flash 
(SRAM, Flash, serial Flash or 
SD/MMC).  You must configure 
RL-Flash as described in Chapter 3.  In this section we 
will look at configuring the TFTP server to work with 
an SD/MMC-based file system.  We will take the 
SD/MMC-based file system developed in Chapter 3 
and add the RL-TCPnet files as shown below. 

The TFTP support is enabled in the Net_Config.c file.  
Once the TFTP server is enabled, you can adjust its 
parameters to meet your requirements.   
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This includes: 
 the number of TFTP clients that can be connected simultaneously, 
 the inactivity timeout for each client, 
 the number of retries supported. 

TFTP uses UDP rather than TCP as its transport protocol.  The use of UDP gives 
a significant saving in both code size and SRAM footprint. 

Complete the TFTP server by adding a user interface file, TFTP_uif.c, located in 
C:\KEIL\ARM\RL\TCPNET\SRC.  This file provides the TFTP callback functions that 
link the server to the file system.  We do not need to modify this file to make the 
basic TFTP server work.  To add special features to the TFTP server, modify 
these callback functions. 

Exercise:  TFTP Server 
 
This exercise builds a TFTP server that can be used to upload and download files 
to the RL-Flash file system. 

HTTP Server 
One key TCP/IP applications 
supported by the RL-TCPnet 
library is a HTTP web server.  The 
web server can be used to deliver 
sophisticated HTML pages to any 
suitable web browser running on 
any platform, be it a PC, Mac, 
smart-phone, or other internet 
enabled device.  The HTTP server has a Common 
Gateway Interface (CGI) that allows us to input and 
output data to the embedded C application. 

To configure the web server, take the first PING 
project and enable the web server option in Net_Config.c.  
In the HTTP server section, define the number of web 
browsers that can connect simultaneously to the server.  
It is also possible to create an access username and 
password. 
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Web Server Content 
The content held in the web server can be any file type that can be displayed by a 
web browser.  This will be hypertext markup language (HTML), which may also 
contain images held in any common format such as PNG, GIF, and JPEG, sound 
in WAV or MP3 formats, and active content such as Java script libraries.  You 
are limited only by the amount of storage space available to your microcontroller.  
Since this will be quite small compared to a full-scale web server, you should be 
careful about which tool you use to generate the HTML script.  Tools such as 
Dreamweaver or FrontPage are likely to generate complex scripts that will be too 
large to store on a small microcontroller.  If you are not familiar with HTML, 
there are many free tutorials available on the internet.  You will also need a 
simple HTML editor so that you can design minimal HTML pages.  Some 
suitable resources are listed in the bibliography section at the end of this book. 

Adding Web Pages 
Once RL-TCPnet is configured and running on the network, we can start to add 
some content to the web server.  Generally, this takes the form of HTML pages.  
You may start with a simple HTML script like the one below. 

<html> 
   <head> 
      … 
   <title>  HTML Example  </title> 
   </head> 
 
   <body> 
      <embed src="sound.wav" autostart="true" hidden="true"> 
      <p>First Emdedded Web Server</p> 
      <p><img src="Keil_logo.gif"> 
         <embed src="sound.wav" autostart="true" hidden="true"></p> 
   </body> 
</html> 

RL-TCPnet allows you to store the HTML pages in two different ways.  You can 
convert the HTML into C arrays, which are then stored as part of the application 
code in the microcontroller program Flash.  This is ideal if you want a very small 
web server that runs on a single chip microcontroller.  The second method stores 
the HTML as files in the RL-Flash file system.  This method has the advantage 
that you can upload new HTML web pages using the TFTP server, but it also has 
a larger code-size footprint. 
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Adding HTML as C Code 
In order to place HTML pages in 
our embedded web server, you 
must add each of the files 
(HTML file, GIF file etc.) to the 
project.  Each of these files 
should be added as a text file 
type.  These files have to be 
processed into a virtual file system in order to get them into the web server.  This 
is done by a special utility provided with the MDK-ARM, called FCARM.EXE (file 
converter for ARM).  The FCARM.EXE utility is located in the C:\KEIL\ARM\BIN 
directory. 

The utility FCARM.EXE is used to 
convert files with web server 
content into C arrays held within 
a program module. 

The creation of the virtual file 
system can be integrated with the 
project build system by adding 
an input file to the project as 
shown below.  The input file is a 
text file containing the command 
line parameters to be used when 
launching the FCARM.EXE utility. 

This input file, web.inp, should be added as a custom file type.  In its local options 
menu you can specify how the file should be treated when the project is built. 

In this case, when the project is 
built, the FCARM utility will be 
run and it will use the contents of 
the web.inp file as its parameters.  
The web.inp file should list the 
input web content and a 
destination C file. 

index.html, sound.wav, hitex_logo.gif to Web.c nopr root Web 
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When the project is built, the three web-content files are parsed and their contents 
are stored as C arrays in the file WEB.c. 

const U8 index_html [] =  { 
"<html> <head> <title>HTML Example</title></head>\r\n" 
"<body>\r\n" 
"<embed src=\"sound.wav\" autostart=\"true\" hidden=\"true\">\r\n" 
"<p>First Emdedded Web Server</p>\r\n" 
"<p><img src=\"Keil_logo.gif\">\r\n" 
"<embed src=\"sound.wav\" autostart=\"true\" hidden=\"true\"></p>\r\n" 
"</body>\r\n" 
"</html>\r\n" 
}; 

When a web browser connects to the server and requests an HTML page, a 
simple “file system” is used to locate the correct array.  The contents of the array 
are then returned to the browser, which in turn displays the contents to the user. 

const struct http_file FileTab [FILECNT] =  { 
   {"index.html", (U8 *) &index_html, 255}, 
   {"sound.wav", (U8 *) &sound_wav, 8903}, 
   {"keil_logo.gif", (U8 *) &keil_logo_gif, 4637}, 
   … 
}; 

To make an active web server, you simply add the Web.c file to your project and 
rebuild the project.  This approach embeds the web server content as part of your 
application.  As it does not use a full file system, you can build a very small web 
server application that will fit within the Flash memory of a small 
microcontroller.  However, once the application is built, it is not possible to 
update the content of the HTML pages.  If you need to change the HTML content 
of a deployed web server, it is possible to store the HTML pages within the RL-
Flash file system.  They then can be updated locally or remotely via the TFTP 
server. 

Exercise:  First Web Server 
 
This exercise configures a minimal Web Server with a single page of HTML. 
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Adding HTML with RL-Flash 
The RL-TCPnet web 
server can be configured 
to serve web pages stored 
in a Flash file system 
implemented with RL-
Flash.  This makes it 
possible for users to upload HTML pages into the file 
system using the TFTP server and then serving them to 
a web browser.  We can configure the web server to 
work this way by taking the TFTP example from the 
last section and enabling the HTTP and TCP support. 

We have now covered the basic techniques for building 
an embedded web server using RL-ARM.  This allows 
us to serve static web pages to remote clients. Most 
embedded web servers host dynamic web pages that 
provide information relative to the system where they 
are hosted.  Therefore, a means to pass data to/from the web server and the C 
application code running in the microcontroller is required.  In the RL-TCPnet 
library, this is done through a Common Gateway Interface (CGI). 

Exercise:  File based web server 
 
This exercise configures the web server to store its HTML content within an SD 
card using the RL-Flash file system.  The TFTP server is enabled also so that 
new pages can be uploaded remotely. 
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The Common Gateway Interface 
The Common Gateway Interface (CGI) is a standard protocol for interfacing 
application software to a TCP/IP server, typically a HTTP server.  The CGI 
protocol will take data from the TCP/IP server that has been entered from a client 
and pass it to the application software in the form of an environment variable.  
The CGI protocol also allows the application software to output data through the 
TCP/IP server.  In the case of a HTTP server, the data is output as dynamically 
modified HTML. 

To enable the CGI interface, we need to add a new C file from the RL-TCPnet 
library to our project.  This file is called HTTP_CGI.C and is stored in the TCPnet 
source directory C:\KEIL\ARM\RL\TCPNET\SRC.  In addition, any HTML file that will 
access the CGI interface must 
have the extension .cgi rather 
than htm or html as shown below. 

The file HTTP_CGI.c links events 
in the web server to the 
application C code via a CGI. 

Dynamic HTML 
We have already discussed how to display static HTML pages.  However, most 
embedded web servers need to display the data held in the C application. 

With the RL-TCPnet, this is done with a simple CGI scripting language that is 
added to the HTML text.  The CGI scripting language contains four basic 
commands.  These must be placed at the beginning of each HTML line within a 
page that uses the CGI gateway.  The commands are as follows: 

Command Description 

I Include a HTML file and output it to the browser. 
T The characters following this command are a line of HTML and should be output 

to the browser. 
C This line of text is a command line and the CGI interface will be invoked. 
. A period ( . ) must be placed at the end of a CGI file. 
# A hash ( # ) character must be placed before a comment. 
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An HTML file that is intended to output a dynamically changing greeting 
message to the web browser would look like this: 

t      <HTML><HEAD><TITLE> Hello World Example </TITLE></HEAD> 
t      <H2 ALIGN=CENTER> Output a Greeting as Dynamic HTML </H2> 
c a    <p> %s </p> 
t      </BODY> 
t      </HTML> 
.                    # The period marks the end of the file 

The first two lines begin with the “t” script command.  This means that the 
remainder of the line is HTML and will be sent to the client browser.  The third 
line begins with the “c” script command.  This means it is a command line.  The 
remainder of the line will be passed in an environment variable to the common 
gateway interface function cgi_func().  The environment variable is called env 
and from the example above it will contain the string “a  <p>%s</p>”.  The 
start of this string consists of user defined control characters, in this case the “a”.  
The cgi_func() must contain code to parse these characters and then format the 
remainder of the HTML line. 

U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi)  { 
  switch (env [0])  { 
    case 'a': 
      len = sprintf ((S8 *) buf, (const S8 *) &env [2], "Hello World"); 
      break; 
   } 
   return ((U16) len); 
} 

In the case above when the page is loaded, the “a” clause of the switch statement 
will be executed.  The sprint() statement then becomes 

len = sprintf ((S8 *) buf, <p>%s</p> , "Hello World"); 

and the contents of buf  becomes: 

<p> Hello World </p> 

which is then output to the browser. 

To the browser the HTML code will appear as shown below. 

<HTML><HEAD><TITLE>Hello World</TITLE></HEAD> 
<BODY> 
<H2 ALIGN=CENTER>Output a Greeting as Dynamic HTML</H2> 
<p> Hello World </p> 
</BODY> 
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This technique is very straightforward and easy to use.  You can apply the CGI 
scripting to any part of the HTML text, in order to generate dynamically any 
form of HTML display.  In the above example, we have only used one user 
defined control character.  It is possible to use multiple control characters to build 
up complex dynamic pages. 

Exercise:  CGI Scripting 
 
This exercise demonstrates the basic scripting method used to generate dynamic 
HTML. 

Data Input Using Web Forms 
Now we will have a look at how to send data from the web browser to the C 
application.  There are two data input methods supported by the CGI module.  
These two methods are called GET and POST.  Both are used to input data 
through a form. 

The GET method should be used if the input data is idempotent.  This means that 
the input data has no observable effect on the world.  For example, entering a 
query into a search engine does not change any data held on the web. 

The POST method should be used if the input data is going to be used to change 
values “in the real world”.  For example, if you are entering data into a database 
you are changing the state of that database and should therefore use the POST 
method.  For our purpose of entering data into a small, embedded web server, we 
will be using the POST method. 

For our purposes, the GET method should be used to change environment 
variables within the web server, while the POST method should be used to 
transfer data between the user and the C application code. 

Using the POST Method 
To allow a remote user to enter data via a web browser, we need to add a form 
cell and a submit button to our web page.  The basic code for this is shown 
below. 
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<HTML> 
  <HEAD> 
  <TITLE>Post example</TITLE> 
  </HEAD> 
<BODY> 
  <FORM ACTION="index.cgi" METHOD="POST" NAME="CGI"> 
    <TABLE> 
      <TR> 
        <TD> 
          <INPUT TYPE="TEXT" ID="textbox1" SIZE="16" VALUE=""></TD> 
        <TD ALIGN="right"> 
          <INPUT TYPE="SUBMIT" ID="change" VALUE="change"></TD> 
      </TR> 
   </TABLE> 
  </FORM> 
</BODY> 
</HTML> 

When this page is viewed, it creates a cell 
“textbox1” and a submit-button “change” that 
invokes the POST method.  Pressing the button will post the data of “textbox1” 
to the CGI interface.  This causes RL-TCPnet to call the CGI_process_data() 
function in the HTTP_CGI.c file. 

void cgi_process_data (U8 *dat, U16 len)  { 
  unsigned char text1 [16]; 
  var = (U8 *) alloc_mem (40); 
 
  do  { 
    dat = http_get_var (dat, var, 40); 
    if (var [0] != 0 )  { 
      if (str_scomp (var, "textbox1") == __TRUE)  { 
        str_copy (text1, var+4);        // extract user data 
        process_Input (text1);          // user function to process data 
      } 
    } 
  } 
} 

The two functions CGI_process_data() and CGI_process_var() are used to 
handle the GET and POST methods for sending data to a web server.  We must 
customize the CGI_process_data() function in order to take data from the 
textbox1 cell. 

When the SUBMIT button is pressed, RL-TCPnet calls CGI_process_data().  In 
this function, a buffer called var is allocated.  The process data is then copied 
into this buffer as a string, by calling the http_get_var() function.  This string 
contains the name of the form cell and any data that has been entered.  The form 
of this string is shown below. 

textbox1=<input text> 
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Now, all we need to do is to add code to parse this string and pass any entered 
data to our C application. 

Exercise:  CGI POST Method 
 
This exercise used the CGI POST method to pass input data from a text box to 
the underlying C application. 

The basic POST method allows you to input data from any HTML form.  
However, when the form is reloaded, the default options will be displayed.  If 
you have a configuration page that uses objects such as radio buttons and check 
boxes, it is desirable to display the current configuration.  To do this, we need to 
employ both the CGI dynamic HTML and the CGI POST method.  When the 
page loads or is refreshed, the CGI_func() must output the current settings.  If 
new values are entered, they will be accepted by the CGI_process_data() 
function.  For a simple text box, the HTML must be modified as follows: 

# 
#  HTML with script commands 
# 
 
t  <HTML> 
t  <HEAD> 
t    <TITLE>Post example</TITLE> 
t  </HEAD> 
t  <BODY> 
t    <FORM ACTION="index.cgi" METHOD="POST" NAME="CGI"> 
t      <TABLE> 
t        <TR> 
t          <TD> 
c a          <INPUT TYPE="TEXT" ID="textbox1" SIZE="16" VALUE="%"></TD> 
t          <TD ALIGN="right"> 
t            <INPUT TYPE="SUBMIT" ID="change" VALUE="change"></TD> 
t        </TR> 
t      </TABLE> 
t    </FORM> 
t  </BODY> 
t  </HTML> 

The CGI_func() must output the current value held in the text box cell when the 
page is loaded. 

//  From cgi_func() in HTTP_CGI.c 
 
case 'a': 
  len = sprintf ((S8 *) buf, (const S8 *) &env [4], text1); 
break; 
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In this case, the data held in the application_data variable will be converted to an 
ASCII string.  When the HTML page is loaded, the string will appear as the 
content of the text box.  This same approach can be applied to any other HTML 
object such as radio buttons, check boxes, and pick lists. 

Using the GET Method 
The GET method works on the same principle as the POST method.  When a 
form is defined in the HTML script, we use the GET method in place of the 
POST method as shown below. 

<FORM ACTION="network.cgi" METHOD="GET" NAME="CGI"> 

Now when the form is submitted, the CGI_process_var() function will be 
triggered in place of the POST method’s CGI_process_data() function.  The 
contents of the input cell are passed to the CGI_process_var() function and can 
be handled in the same manner as the CGI_process_data() function. 

void cgi_process_var (U8 *qs)  { 
  U8 *var; 
  var = (U8 *) alloc_mem (40); 
 
  do  { 
    qs = http_get_var (qs, var, 40); 
    if (var [0] != 0)  { 
      if (str_scomp (var, "query=" ) == __TRUE)  { 
        form_query_string (var+6); 
      } 
    ……… 
    } 
    while (qs); 
    free_mem ((OS_FRAME *) var); 
  } 
} 

Exercise: Web Server Forms 
 
This exercise demonstrates the code needed for each of the basic web form 
objects including text box, radio button, check box and selection list. 
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Using JavaScript 
JavaScript is a C like scripting language stored on a web 
server and downloaded on demand to a client browser.  
The client interprets and executes the script on its host 
processor, be this a PC, MAC, or smartphone.  JavaScript 
allows you to develop sophisticated multi-platform user 
interfaces.  In this section, we will look at adding a 
JavaScript library that draws a graph.  First, we need a 
suitable JavaScript application.  A graph drawing 
application can be downloaded from 
www.codeproject.com/jscript/dhtml_graph.asp.  This 
object consists of two files, a JavaScript source file, and a 
gif.  Add them to a web server application.  The web.inp 
file content is: 

index.htm, graph.htm, dot.gif, graph.js  to  Web.c  nopr  root  Web 

The three graph files (graph.htm, dot.gif, and graph.js) are also added to the web.inp 
command line.  The HTML file graph.htm invokes the graph object. 

<script language="JavaScript"> 
  var bg = new Graph (10); 
 
  bg.parent = document.getElementById ('here'); 
  bg.title = 'Annual average temperature by month'; 
  bg.xCaption = 'Month'; 
  bg.yCaption = 'Temperature'; 

  bg.xValues [0] = [10, 'Jan']; 
  bg.xValues [1] = [15, 'Feb']; 
  bg.xValues [2] = [17, 'March']; 
  bg.xValues [3] = [20, 'April']; 
  bg.xValues [4] = [22, 'May']; 
  bg.xValues [5] = [30, 'June']; 
  bg.xValues [6] = [33, 'July']; 
  bg.xValues [7] = [27, 'Aug']; 
  bg.xValues [8] = [20, 'Sept']; 
  bg.xValues [9] = [18, 'Oct']; 
  bg.xValues [10] = [15, 'Nov']; 
  bg.xValues [11] = [9, 'Dec']; 

  bg.showLine = true; 
  bg.showBar = true; 
  bg.orientation = 'horizontal';                // or = 'vertical'; 

  bg.draw (); 
</script> 
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When the html page is loaded, 
the JavaScript library is sent to 
the browser client.  The HTML 
code is used to create the graph 
object and define the 
coordinates. 

When the graph page is loaded, 
the JavaScript code will be 
downloaded to the browser.  The 
browser will then execute the 
JavaScript code and draw the graph.  This results in a “static” graph where 
always the same values are plotted.  While this is not very useful in an embedded 
system, it is a good starting point to test the JavaScript source code, particularly 
if you have not written it yourself.  Once the JavaScript is running as a static 
object, the RL-TCPnet scripting commands can be used to pass data from the 
embedded application to the JavaScript graph.  First, we must rename the 
graph.htm file to graph.cgi then add the script commands as shown below. 

c m a        bg.xValues [0] = [%s, 'Jan']; 
c m b        bg.xValues [1] = [%s, 'Feb']; 
c m c        bg.xValues [2] = [%s, 'March']; 
c m d        bg.xValues [3] = [%s, 'April']; 
c m e        bg.xValues [4] = [%s, 'May']; 
c m f        bg.xValues [5] = [%s, 'June']; 
c m g        bg.xValues [6] = [%s, 'July']; 
c m h        bg.xValues [7] = [%s, 'Aug']; 
c m i        bg.xValues [8] = [%s, 'Sept']; 
c m j        bg.xValues [9] = [%s, 'Oct']; 
c m k        bg.xValues [10] = [%s, 'Nov']; 
c m l        bg.xValues [11] = [%s, 'Dec']; 

 
// 
//      From HTTP_CGI.c 
// 
unsigned char months [12] =  
  {10, 15, 17, 20, 22, 30, 33, 27, 20, 18, 15, 9}; 
U16 cgi_func (U8 *env, U8 *buf, U16 buflen, U32 *pcgi)  { 
  … 
  case 'm': 
    i = env [2] - 0x61; 
    sprintf (buffer, "%1d", months [i]); 
    len = sprintf ((S8 *) buf, (const S8 *) &env [4], buffer); 
    break; 
…… 
} 
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Here we want to display temperature values held in a C array controlled by the 
application code.  We add a script command for each line of JavaScript that is 
used to pass the graph coordinates.  The fixed graph values are replaced by a %s 
for the dynamic data.  When the page is loaded, each script line will trigger the 
cgi gateway function cgi_func().  A second user defined command is added for 
each script line (a to l).  Each time the script command triggers, the cgi_func() is 
called and we enter case ’m’: of the switch statement.  The ASCII value of the 
second user defined character is read from the env[] array and we deduct 0x61.  
This converts from an ASCII character value to a binary value between 0 and 11.  
This value is used as an index into the application data array (months[]).  The 
logged temperature data is then converted into an ASCII string.  Finally, the 
sprintf() command is used to replace the %s in the HTML code with the 
application data value.  The result is a graph that displays the dynamic data 
logged by the application.  Using this approach, you can see that web server 
scripting commands in TCPnet allow you to pass dynamic application data to any 
embedded object. 

Exercise: JavaScript 
 
This exercise demonstrates adding a JavaScript Graph object to a CGI page. 

AJAX Support 
Using the RL-TCPnet scripting language to pass dynamic data to JavaScript 
objects allows you to easily build sophisticated html pages that utilize the 
thousands of man hours of development that has gone into many web browsers.  
However, there are disadvantages if you are trying to display frequently changing 
data.  An easy solution is for the user to press the browser’s refresh button or you 
can add a refresh tag to the <head> section of the HTML code. 

<meta http-equiv = "refresh" content="600"> 

While this works, it is not very satisfactory for two reasons.  First, this causes the 
whole page to reload, what causes screen flicker and thus is not very satisfactory 
for the user.  Second, the browser has to download the whole page again, which 
is slow and consumes bandwidth.  The solution to this problem is to use a group 
of interrelated web development techniques called “Asynchronous JavaScript and 
XML” or Ajax for short.  For our purposes, Ajax is used to isolate the dynamic 
data within a group of XML tags.  This data is then sent to the browser at an 
update rate defined within the html page.  This means that the dynamic 
application data is sent in a single TCP packet providing a very fast update rate 
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that consumes minimal bandwidth.  The most commonly used browsers can take 
this data and update the web page without having to reload the full page.  This 
gives flicker free “real-time” update of dynamic objects within the web page. 

To see how the Ajax support works within RL-
TCPnet, we will look at creating a CGI page that 
contains eight tick boxes that reflect the state of a 
series of buttons connected to port pins on the 
user hardware.  The necessary Ajax JavaScript 
support is contained in a support file called 
xml_http.js.  This file should be added to a web 
server project as shown above.  Next, we must 
create a CGI page, buttons.cgi, that displays the 
eight check boxes.  A separate XML file, 
buttons.cgx, is also created that will hold the 
dynamic data as XML tags. 

#------------------------------------------------ 
#  HTML script in buttons.cgi 
#------------------------------------------------ 

t  <form action="buttons.cgi" method="post" id="form1" name="form1"> 
t    <table border="0" width="99%"><font size="3"><tr> 
t      <td><img src="pabb.gif">Buttons [7..0]:</td> 
t      <td align="center"> 
t        <input type="checkbox" disabled id="button7">7 
t        <input type="checkbox" disabled id="button6">6 
t        <input type="checkbox" disabled id="button5">5 
t        <input type="checkbox" disabled id="button4">4 
t        <input type="checkbox" disabled id="button3">3 
t        <input type="checkbox" disabled id="button2">2 
t        <input type="checkbox" disabled id="button1">1 
t        <input type="checkbox" disabled id="button0">0 
t      </td> 
t    </tr></font></table> 
t    <p align="center"> 
t      <input type="button" id="refreshBtn" value="Refresh"  
                onclick="updateMultiple(formUpdate)"> 
t      Periodic:<input type="checkbox" id="refreshChkBox"  
                onclick="periodicUpdate()"></p></form> 

A refresh button, a tick box, 
and eight status boxes are 
created in a form that uses 
the post method.  The 
refresh button will invoke a JavaScript function, updateMultiple().  Checking the 
periodic tick box will call a separate JavaScript function, periodicUpdate(). 
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/*------------------------------------- 
*  xml_http.js 
*------------------------------------*/ 
function periodicObj (url, period)  { 
  this.url = url; 
  this.period = (typeof period == "undefined") ? 0 : period; 
} 

 
#-------------------------------------- 
#  buttons.cgi 
#-------------------------------------- 
t  var formUpdate = new periodicObj ("buttons.cgx", 300); 

 
/*---------------------------------------- 
*  xml_http.js 
*---------------------------------------*/ 
function updateMultiple (formUpd, callBack, userName, userPassword)  { 
  xmlHttp = GetXmlHttpObject(); 
  if (xmlHttp == null)  { 
    alert ("XmlHttp not initialized!"); 
  } 
  return 0; 
} 

When the refresh button is pressed, the JavaScript function updateMultiple() is 
downloaded from the server and executed in the browser.  This is a standard 
function in the xml_http.js support file.  When this function is invoked, a 
parameter called formUpdate is passed.  This is an instance of a JavaScript object 
called periodicObj that is also defined in xml_http.js.  This object passes the name 
of the xml file that has to be downloaded, as well as the update period measured 
in msec. 

#-------------------------------------- 
#  Buttons.cgx 
#-------------------------------------- 
t  <form> 
c  y0 
c  y1 
c  y2 
c  y3 
c  y4 
c  y5 
c  y6 
c  y7 
t  </form> 
. 
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/*--------------------------------------- 
*  cgi_func() in HTTP_CGI.c 
*--------------------------------------*/ 
  case 'y': 
    len = sprintf ( 
             (char*) buf, 
             "<checkbox><id><button%c</id> <on>%s</on></checkbox>", 
             env [1], 
             (get_button () & (1<<(env [1]-'0'))) ? "true" : "false" 
          ); 
    break; 

 
<!----------------------------------------- 
#  Generated XML 
#-----------------------------------------> 
<form> 
  <checkbox><id>button0</id><on>true</on></checkbox> 
  <checkbox><id>button1</id><on>false</on></checkbox> 
  <checkbox><id>button2</id><on>false</on></checkbox> 
  <checkbox><id>button3</id><on>false</on></checkbox> 
  <checkbox><id>button4</id><on>false</on></checkbox> 
  <checkbox><id>button5</id><on>false</on></checkbox> 
  <checkbox><id>button6</id><on>false</on></checkbox> 
  <checkbox><id>button7</id><on>false</on></checkbox> 
</form> 

This causes the browser to download the buttons.cgx file, which is a small file 
containing a script line for each element of the form.  Each script line causes 
cgi_func() to execute.  The user defined command letters cause case y in the 
switch statement to execute.  This code then constructs the necessary XML to 
update the browser tick-boxes and reflect the current  status of the buttons on the 
user hardware.   

It is important to note that there should be no space characters in the 
generated XML code. 

#-------------------------------------- 
#  buttons.cgi 
#-------------------------------------- 
t function periodicUpdate()  { 
t  if (document.getElementById ("refreshChkBox").checked == true)  { 
t   updateMultiple (formUpdate); 
t   periodicFormTime = setTimeout ("periodicUpdate ()",formUpdate.period); 
t  } else  { 
t     clearTimeout (periodicFormTime); 
t  } 
t } 
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If the periodic update tick box is checked, it will invoke a function called 
periodicUpdate().  This is a user defined function located in the <head> section 
of buttons.cgi.  This function calls the updateMultiple() to display the current 
status of the tick boxes.  It will then set a timer within the browsers event 
scheduling called periodicFormTime with the update period defined in the 
formUpdate object.  When this timer expires it will call again 
periodicUpdate(),which will automatically refresh the status of the tick boxes 
and restart the timer.  If the user unchecks the tick box, the timer will be halted 
with the clearTimeout() function.  Remember, this is all JavaScript code that 
invokes functions within the client browser.  The result is a low bandwidth 
connection to the RL-TCPnet web server that provides “real-time”, flicker-free 
updates of dynamic application data. 

Exercise: Ajax web form 
 
This example demonstrates the minimum code necessary to update a web form 
using Ajax support. 

Simple Mail Transfer Client  
The RL-TCPnet library includes an SMTP client, which allows your application 
software to send email messages.  Each email message can be a fixed text string, 
or it can be a dynamic message generated by the application software. 

Adding SMTP Support 
We can add SMTP support by 
enabling the SMTP client in 
Net_Config.c and adding the 
SMTP_uif.c support file to the 
project. 

The final configuration step is to 
define the address of the SMTP 
server in your application code.  
The SMTP server address is held as a global array and is defined as follows: 

U8 srv_ip [4] = {192, 168, 0, 253}; 
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Sending a Fixed Email Message 
Once the server has been configured, the application starts the SMTP client by 
calling the smtp_connect() function.  This function connects to an SMTP server, 
sends a single email, disconnects from the server, and finally calls a callback 
function. 

smtp_connect ((U8 *) &srv_ip, 25, smtp_cback); 

Smtp_connect() requires three parameters.  The first parameter is the SMTP 
server IP address.  The second parameter is the port number on that the SMTP 
server is running; the standard, well-known SMTP port is “25”.  Finally, we pass 
the name of the function that will be called when the SMTP session finishes. 

The email message is composed by the smtp_connect() function by calling the 
user-defined SMTP client interface function smtp_cbfunc() stored in the 
SMTP_uif.c file: 

U16 smtp_cbfunc (U8 code, U8 *buf, U16 buflen, U16 *pvar xcnt) 

During the SMTP session, this function is called several times.  Each time it is 
called, a different code is passed.  This is in order to request a different element 
of the email message: sender’s email address, destination address, subject, and 
finally the message.  Each part of the message must be copied into the buffer, 
which is passed as the second parameter.  The third parameter passes the 
maximum size of the message buffer.  This will vary depending on the 
underlying maximum segment size of the TCP/IP network.  A very simple 
message can be sent as follows: 

switch (code)  { 
  case 0:                                     //senders email address 
    len = str_copy (buf, "sender@isp.com"); 
    break; 
  case 1:                                     //recipient email address 
    len = str_copy (buf, "receiver@isp.com); 
    break; 
  case 2:                                     //subject line 
    len = str_copy (buf, "Hello RL-TCPnet"); 
    break; 
  case 3:                                     //message 
    len = str_copy (buf, "Email from RL-TCPnet."); 
    break; 
} 
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The final message string must be terminated with a period (.).  Once the message 
has been, sent the SMTP session will end and the user-defined callback function 
will be called.  A session code will be passed to the callback function.  This 
reports whether the SMTP session was successful and if not, why it failed. 

static void smtp_cback (U8 code)  { 
  switch (code)  { 
    case SMTP_EVT_SUCCESS: 
      printf ("Email successfully sent\n"); 
      sent = __TRUE; 
      break; 
    case SMTP_EVT_TIMEOUT: 
      printf ("Mail Server timeout.\n"); 
      break; 
    case SMTP_EVT_ERROR: 
      printf ("Error sending email.\n"); 
      break; 
  } 
} 

Exercise:  Simple SMTP 
 
This exercise presents the minimal code required to send a fixed email message. 

Dynamic Message 
It is possible to send dynamically created email messages.  The sender and 
recipient email addresses and the subject can be held as strings, so that different 
addresses and subjects can be selected.  The application software can also 
dynamically generate the data sent in the message. 

It is possible to send long email messages that contain application data.  For each 
call to the smtp_cbfunc() function, we can only send a packet of data with the 
size of the buffer buf.  However, we can force multiple calls to the smtp_cbfunc() 
and build an email message that is larger than the buffer size. 

typedef struct  { 
  U8  id; 
  U16 idx; 
} MY_BUF; 
 
#define MYBUF(p) ((MY_BUF *) p) 

First, we must declare a simple structure to control the construction of the email 
data packets.  In the structure above, the idx element counts the number of 
packets sent, and id controls the flow of the smtp_cbfunc() switch statement. 
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Next, expand the case 5 switch statement of the smtp_cbfunc() function, to 
handle multiple data packets.  Add another switch statement as shown in the code 
below.  The local buffer MYBUF(pvar)-->id counts how many data packets have 
been sent, and  MYBUF(pvar)-->id controls the flow of the code through the new 
switch statement.  The smtp_cbfunc returns the number of bytes that have been 
written to the output buffer.  Recurring calls to the smtp_cbfunc() function can be 
enforced by setting the most significant bit of the return value to high. 

U16 smtp_cbfunc (U8 code, U8 *buf, U16 buflen, U32 *pvar)  { 
  U32 len = 0; 
 
  switch (code)  { 
  … 
  case 5: 
    switch (MYBUF(pvar)->id)  { 
      case 0: 
        len = str_copy (buf, "First Packet of Data\n"); 
        MYBUF (pvar)->id = 1; 
        MYBUF (pvar)->idx = 1; 
        goto rep; 
 
      case 1: 
        len = str_copy (buf,"Bulk of the data\n"); 
        if (++MYBUF(pvar)->idx > 5)  { 
          MYBUF(pvar)->id = 2; 
        } 
 
        /* Request a repeated call, bit 15 is a repeat flag. */ 
rep:    len |= 0x8000; 
        break; 

      case 2:   
        /* Last one, add a footer text to this email. */ 
        len = str_copy (buf,"Last Packet of data.\n"); 
        break; 
    } 
  } 
  return ((U16) len); 
} 

Therefore, to send an email with a large amount of data we add a new switch 
statement with cases.  The first case sends the initial packet of data and sets the 
repeat flag, the second case sends the bulk of the data and sets the repeat flag.  
The final case sends the final packet of data and does not set the repeat flag. 

Exercise:  Dynamic SMTP 
 
This exercise demonstrates how to construct a long email message containing 
dynamic data. 
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It is only possible to send the first 127 ASCII text characters as part of an email 
message.  If you plan to send binary data in an email message, it must be encoded 
as a text string.  The most common way of doing this is to use base64 encoding.  
The following example demonstrates an encoder and decoder utility. 

Exercise:  Base64 Encoding 
 
This exercise demonstrates a base64 encoder, which can be used to prepare 
binary data for inclusion in an email message. 

Telnet Server 
The RL-TCPnet library allows 
you to add a Telnet server to 
your application.  Within the 
Telnet server, you can provide a 
custom menu system that links 
directly to your application C 
code.  This code exists in the 
telnet support file.  Once added, 
the telnet server is fully functional, including buffering of the command history.  
The Telnet server has a very small code footprint.  This makes it ideal for designs 
that need remote connectivity having very little Flash memory available.  A PC 
running a Telnet client can then access the Telnet server.  This approach gives 
similar functionality to a HTTP server, but with a much smaller code footprint.  

Like the other RL-TCPnet applications, we need to enable the Telnet server in 
the Net_Config.c module.  Once enabled, we can also define the number of parallel 
connections and if necessary, add password protection.  All of the custom code 
for the Telnet server is held in the user interface file Telnet_uif.c.  This file consists 
of two functions: tnet_cgfunc() and tnet_process_cmd(). 

U16 tnet_cbfunc (U8 code, U8 *buf, U16 buflen) 

The first function, tnet_cbfunc(), is used to manage the password logon to the 
Telnet server.  It also prints the logon banner and the prompt string that is printed 
at the beginning of each line in the Telnet terminal.  You will not need to change 
the code in this function, but you can change the strings to customize the 
appearance of the Telnet server. 

U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U16 xcnt) 
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The second function is telnet_process_cmd().  This command line parser is used 
to read the input from the Telnet client and then calls the required C application 
functions.  When a client connects to the Telnet server and enters a command 
string, the telnet_process_cmd() function is triggered.  The cmd pointer can 
access the command string entered by the client. 

Any reply by the Telnet server must be entered into the buffer buf.  The size of 
this buffer depends on the network maximum segment size.  The third parameter, 
buflen, contains the current maximum size for the buffer buf.  Within this 
function, we must make a command line parser.  This will be used to inter-
operate the Telnet client commands and call the C application functions. 

if (tnet_ccmp (cmd, "ADIN") == __TRUE)  { 
  if (len >= 6)  { 
    sscanf ((const S8 *)(cmd+5), "%d",&ch); 
    val = AD_in (ch); 
    len = sprintf ((S8 *) buf, "\r\n ADIN %d = %d", ch, val); 
    return (len); 
  } 
} 

When the telnet_process_cmd() function is triggered, we can use the helper 
function tnet_ccmp() to examine the contents of the command buffer cmd.  In the 
above example, the client command ADIN requests the current conversion value 
for a selected ADC channel.  It is important to note that the helper function 
tnet_ccmp() converts the command string characters to uppercase.  This means, 
that all your menu options must be defined as uppercase strings.  The example 
parses the string to determine which channel is required.  Then it calls the user 
ADC() conversion function.  Next, it places the results in the reply buffer, which 
is then sent back to the Telnet client.  Finally, the number of bytes written into 
the reply buffer must be returned to the RL-TCPnet library. 

if (tnet_ccmp (cmd, "BYE") == __TRUE)  { 
  len = str_copy (buf, "\r\nDisconnect...\r\n"); 
  return (len | 0x8000); 
} 

As well as returning the number of bytes in the reply buffer, the most significant 
bit of the return value acts as a disconnect flag.  Setting this bit terminates a 
Telnet session. 

Exercise:  Telnet Server 
 
This exercise demonstrates a Telnet server with a simple command line parser. 
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In a simple Telnet server, the amount of data that can be sent to the Telnet client 
is limited by the size of the reply buffer buf.  However, it is possible to force the 
RL-TCPnet library to make multiple calls to the telnet_process_cmd() function.  
Then, with each pass through the telnet_process_cmd() function, we can fill the 
reply buffer, in order to send multiple packets of data to the client. 

U16 tnet_process_cmd (U8 *cmd, U8 *buf, U16 buflen, U16 xcnt)  { 
  U16 len = 0; 
 
  if (repeatcall)  { 
    len |=0x4000; 
  } 
  return(len); 
} 

The tnet_process_cmd() function return value contains a repeat flag.  The repeat 
flag is bit 14.  When this bit is set, the RL-TCPnet library will make another call 
to the tnet_process_cmd() function.  Each time this function is called, the fourth 
parameter, xcnt, will be incremented by one.  By using the repeat flag and the 
pass counter xcnt, the parsing code can send large amounts of data to the Telnet 
client. 

Exercise:  Telnet Server 
 
This exercise extends the basic parser used in the last example to send a long 
reply to a client. 

Telnet Helper Functions 
In addition to the tnet_cbfunc() and tnet_process_cmd() functions, there are 
several custom helper functions.  We have already seen the tnet_ccmp() function.  
This is similar to strcmp(), except that it only compares the string contents up to 
the first NULL or space character.  Be careful with this function, as all the 
characters in the string to be searched are converted to uppercase.  The Telnet 
server may also determine the MAC and IP address of the client PC.  These 
values are entered into a structure by calling the tnet_get_info() function. 

/*-------------------------------------- 
*  net_config.h 
*--------------------------------------*/ 
typedef struct remotem  { 
  U8 IpAdr [IP_ADRLEN];   //client IP address 
  U8 HwAdr [ETH_ADRLEN];  //Client MAC address 
} REMOTEM; 
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/*-------------------------------------- 
*  telnet_uif.c 
*--------------------------------------*/ 
RMOTEM user; 
tnet_get_info(&user); 

It is also possible to continuously send data from the Telnet server to the client, 
without requests from the Telnet client.  The tnet_set_delay() function can be 
used to ensure that the RL-TCPnet library calls the tnet_process_cmd() function 
with a set periodic delay.  The resolution of the delay period is the same as the 
timer tick period.  The standard value for this is 100ms. 

len = sprintf (buf, "ADIN0 = %d",AD_in (0)); 

tnet_set_delay (20);  // Delay for 2 seconds (20 * 100ms) 
len |= 0x4000;        // Request a repeated call; bit 14 is a repeat flag. 

Exercise:  Telnet Server Helper Functions 
 
This exercise demonstrates the Telnet Server Helper Functions. 

DNS Client 
The RL-TCPnet library contains 
a Domain Name System (DNS) 
client.  The DNS client is used to 
access a DNS server and resolve 
a symbolic address to a numeric 
IP address.  One typical 
application for the DNS client 
would be to convert a 
configuration string entered by a 
human to a usable IP address, for 
example post.keil.com. 

To configure the DNS client we must first enter the IP address of a primary and 
secondary DNS server in the Net_Config.c file.  These values are not necessary if 
the Dynamic Host Configuration Protocol (DHCP) client is enabled.  This is 
because the DHCP server will provide these addresses when the DHCP client 
leases an IP address.  Next, enable the DNS client in the Net_Config.c file.   

The DNS cache table size defines the maximum number of DNS records that can 
be held by the DNS client.  Each record relates the symbolic address to the 
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numeric IP address.  Each record is 12 bytes in size.  Once the DNS client has 
been configured, we can resolve a symbolic address by calling the 
get_host_by_name() function. 

get_host_by_name ("www.keil.com", dns_cbfunc); 

This function takes the host symbolic name as a string and also the address of a 
user-defined call back function.  Once invoked, the DNS client will attempt to 
resolve the address by contacting the DNS server.  The results will be passed to 
the call back function. 

static void dns_cbfunc (unsigned char event, unsigned char *ip)  { 
  switch (event)  { 
    case DNS_EVT_SUCCESS:      // Success: IP address pointed at by *ip 
      break; 
    case DNS_EVT_NONAME:       // Name does not exist in DNS database. 
      break; 
    case DNS_EVT_TIMEOUT:      // DNS sever timeout 
      break; 
    case DNS_EVT_ERROR:        // DNS protocol error 
      return; 
  } 
} 

Exercise:  DNS Resolver 
 
This exercise takes symbolic host addresses entered via a web page and resolves 
the IP addresses. 

Socket Library 
The RL-TCPnet supports the internet applications, which are most useful to a 
small, embedded system.  However, you may wish to use the microcontroller’s 
Ethernet peripheral for a custom application.  For example, you may wish to use 
the Ethernet peripheral for high-speed board-to-board communication within a 
distributed control system.  A number of industrial communication protocols, 
such as PROFINET or MODBUS/TCP, use TCP/IP as their base communication 
protocol.  If you do wish to make a custom protocol, then RL-TCPnet has a low 
level “Sockets” API.  This allows you to send and receive raw TCP and UDP 
frames.  To demonstrate how the Sockets Library is used, we will establish a 
TCP/IP link between two microcontrollers and send custom data packets as UDP 
and TCP frames. 
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User Datagram Protocol (UDP) 
Communication 
In this first example, we will 
connect two boards together 
through an Ethernet crossover 
cable.  The boards will 
communicate by sending packets 
of data as UDP frames. 

The Sockets API is a standard part of the RL-TCPnet library, so we can use our 
first example PING project as a starting point.  Then we just need the UDP 
protocol to be enabled.  UDP is a half-duplex bi-directional protocol.  This means 
that we can establish a single connection between two IP addresses and two 
ports.  We can then send and receive data packets between the two stations over 
this single channel. 

socket_udp = udp_get_socket (0, UDP_OPT_SEND_CS|UDP_OPT_CHK_CS, 
                             udp_callback); 

First we must call udp_get_socket().  We pass the type of service to this function.  
This is not widely used, so we enter the default value zero.  We can also opt to 
generate and check the UDP packet checksum.  Next, we pass the address of a 
callback function, which will be called if a packet is received.  Once called, this 
function will return a handle to a free socket. 

udp_open (socket_udp, 1001); 

Once we have a free socket, we can open a UDP port for communication. 

U8 *sendbuf; 

When the port is open, we can send and receive UDP packets.  To send a packet, 
we must first acquire a UDP packet data frame.  To do this we call the 
udp_get_buf() function and pass the size of the data packet that we want to send.  
This can be up to the maximum Ethernet frame size of 1500 bytes.  This function 
then returns a pointer to the data packet buffer.  Next, we use this pointer to write 
our application data into the UDP packet. 

udp_send (socket_udp, Rem_IP, 1001, sendbuf, SENDLEN); 
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Once the data has been written into the packet, we can use udp_send() to transmit 
it.  When we call the udp_send() function, we must pass the socket handle, the 
remote IP address, the remote port, the buffer pointer and the data packet size.  
This will cause RL-TCPnet to send the frame.  The UDP protocol is a “best 
effort” protocol.  This means that once the packet is sent there is no 
acknowledgement or handshake from the destination station.  If you require a 
positive acknowledgement that the packet was received, then the destination 
station must send a reply UDP frame. 

U16 udp_callback (U8 soc, U8 *rip, U16 rport, U8 *buf, U16 len)  { 
 
  if (soc == socket_udp)  { 
    Process_packet (buf,len); 
  } 
  return (0); 
} 

To receive the UDP data packets the destination station must make the same “get 
socket” and “port open” calls.  This will ensure that it is listening for the UDP 
packet.  When a packet arrives, it is processed by the RL-TCPnet and the 
udp_callback() function is triggered.  This function receives the local socket 
handle, the remote IP address, and the port number of the sending station.  It also 
receives a pointer to the received data along with the number of bytes received.  
The destination station can then reply back to the source station using its IP 
address and port number. 

Exercise:  UDP Sockets 
 
This exercise demonstrates peer-to-peer communication between two evaluation 
boards using the UDP protocol. 
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Transmission Control Protocol (TCP) 
Communication 
We will use the same basic PING project in order to establish TCP 
communication between the two boards.  Of course, this time we must enable the 
TCP protocol in place of UDP. 

TCP is more complex than UDP.  
TCP supports full duplex 
communication.  TCP configures 
one station and port as a server, 
which listens for data packets 
sent by a client on the specified 
port.  In order to support full 
duplex communication, a TCP connection will use two ports on both stations.  
One will receive data and the other will send data.  Unlike UDP, the TCP 
protocol guarantees delivery of data packets.  This means that delivered packets 
are acknowledged, lost packets are retransmitted, and data spread over multiple 
frames will be delivered in the correct order. 

socket_tcp = tcp_get_socket (TCP_TYPE_CLIENT, 0, 10, tcp_callback); 

To establish a TCP connection we must first get a free socket.  In a similar way 
to using UDP, we call a tcp_get_socket() function.  We then pass the type of 
service and a callback function to handle received packets.  In addition, we must 
also pass an idle timeout period and a connection type.  The basic connection 
types are server or client.  A client socket can initiate a connection to a remote 
server, whereas a server listens for a client connection.  It is also possible to 
configure a socket as a client-server.  This would allow it to both listen for a 
connection and initiate a connection.  The TCP connection can also be optimized 
for large data transfers by enabling an acknowledge delay as shown below. 

socket_tcp = tcp_get_socket (TCP_TYPE_CLIENT|TCP-TYPE_DELAY_ACK,  
                             0, 10, tcp_callback); 

The TCP protocol is more complex than UDP.  Before we can open a TCP port 
or send data, we must examine the current port state. 

TCPState = tcp_get_state (socket_tcp); 
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The tcp_get_state() function will return the current state of a socket.  The 
possible socket states are shown below: 

On the first call, tcp_get_state() will report that the socket is closed.  In this case, 
we can open the socket for use and connect to a remote IP and port address. 

if (TCPState == TCP_STATE_CLOSED)  { 
  tcp_connect (socket_tcp, Rem_IP, PORT_NUM, 0); 
} 

Unlike UDP, we cannot simply prepare a packet of data and send it.  Each TCP 
frame is acknowledged by the remote station, so RL-TCPnet must hold each 
frame in memory until it is acknowledged.  If no acknowledgement arrives, then 
the frame data must be available for re-sending.  This requires careful 
management.  Obviously if we send lots of TCP frames, all of the 
microcontroller RAM will be used up by TCP data waiting for an 
acknowledgement.  Before we can send a new frame, we must call 
tcp_check_send().  This function ensures that the TCP connection is valid and 
that the socket is not waiting for an earlier packet to be acknowledged. 

If the socket is free, we can allocate a TCP data buffer and send a new packet in a 
similar fashion to the UDP packets. 

if (tcp_check_send (socket_tcp) == __TRUE)  { 
  sendbuf = tcp_get_buf (SENDLEN); 
  tcp_send (socket_tcp, sendbuf, SENDLEN); 
} 
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On the server side, we must get a socket and configure it as a server.  Then we 
need to open a port to listen for a client connection. 

socket_tcp = tcp_get_socket (TCP_TYPE_SERVER, 0, 10, tcp_callback); 
if (socket_tcp != 0)  { 
  tcp_listen (socket_tcp, PORT_NUM); 
} 

When a remote node sends a TCP packet, it will be received by RL-TCPnet and 
the callback function will be triggered. 

U16 tcp_callback (U8 soc, U8 evt, U8 *ptr, U16 par)  { 
 
  return (0); 
} 

This function is passed the socket handle, a pointer to the data packet and the 
number of bytes in the data packet.  Tcp_callback() is also passed an event code 
evt.  The evt code specifies the type of TCP connection event. 

When a remote station first connects to the TCP server, port tcp_callback() will 
be triggered with the TCP_EVT_CONREQ condition.  In this case, the pointer, 
par, points to the IP address of the remote station.  The parameter par holds the 
remote port number.  If the server wants to refuse connection to the remote 
station, it can return 0x00 and the connection will be closed.  Otherwise it will 
return 0x01.  All other states should return 0x00.  Once the connection has been 
accepted, any valid TCP packet will trigger the TCP_EVT_DATA condition and 
the packet data can be read from the frame buffer. 

Exercise:  TCP Sockets 
 
This exercise demonstrates client-server communication between two evaluation 
boards, using the UDP protocol. A second example uses a TCP socket to get the 
current date and time from a remote daytime server. 
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Deployment 
During development you can use the default Media Access Control (MAC) 
address provided in Net_Config.c.  However, when you come to manufacture your 
final product, each unit you are making must have a unique MAC address.  It is 
possible to purchase a block of 4096 MAC addresses from the IEEE web site.  
This is called an Individual Address Block (IAB).  If you plan to use more than 
4096 MAC addresses, you can buy an Organizational Unique Identifier, which 
gives you 0x1000000 MAC addresses.  For more details, see the IEEE web site at 
http://standards.ieee.org/regauth/oui/index.shtml. 

During production, there are two strategies for programming the MAC address of 
each unit.  You can initially program each unit with the same code and MAC 
address.  Then, during the final test phase, the MAC address can be 
reprogrammed to a unique value.  This can be done by adding some additional 
code to your application for this purpose. 

Alternatively, the MAC address can be located to a fixed address in its own 
linker segment.  In the compiler tool chain, the ElftoHex.exe converter takes the 
output of the linker and generates a HEX file.  This utility can produce a HEX 
file for each program segment.  This means that we can have all our program 
code in one segment.  Only the MAC address is in a separate HEX file.  Thus, we 
can burn the program HEX file into each unit and then increment and program 
the MAC address separately.  This method is also useful if your microcontroller 
has a One-Time Programmable (OTP) memory region, which is programmed 
separately from the main Flash memory. 

Exercise:  MAC Programming 
 
This exercise demonstrates generating a program HEX file and a MAC address 
HEX file for production programming. 
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Serial Drivers 
Although most RL-TCPnet applications will connect to a TCP/IP network using 
an Ethernet interface, it is also possible to use a UART connected to a modem to 
establish a Serial Line Internet Protocol (SLIP) or Point-to-Point (PPP) 
connection with the network. 

In order to configure the RL-TCPnet library to establish a PPP connection, you 
must enable the PPP support in Net_Config.c first.  Like the Ethernet interface, the 
PPP interface allows you to define the IP address, subnet, and the DNS server.  It 
also gives you the option of 
having them assigned 
automatically by the PPP host. 

In addition to these basic 
parameters, we can also define a 
character map, which defines 
replacement strings for 
characters used for modem and 
flow control.  If you are 
communicating with a modem or 
using software flow control, it is 
necessary to send control 
characters alongside the data 
packets.  The values used for the 
control characters may not be sent in the data packets.  We must encode the 
values used as control characters, in order to send them in a data packet.  For 
example, if we are using the Xon/Xoff software flow control, the value 0x11 is 
used to start the serial data stream, 0x13 is used to halt it. 

To allow the values 0x11 and 0x13 to be sent as part of a data packet, we must 
define a two-byte encoding that replaces each instance of these values in the data 
stream.  The encoding used in SLIP and PPP protocols is the ASCII escape 
character (0x7D), followed by the value to be encoded XORed with 0x20. 

XON = 0x11  Async control character = 0x31 
XOFF = 0x13  Async control character = 0x33 

When a data packet contains 0x11 it will now be replaced with 0x7D 0x31. 
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We must also replace the Ethernet driver with a serial driver.  Serial drivers for 
supported microcontrollers are located in C:\KEIL\ARM\RL\TCPNET\DRIVERS. 

The serial driver contains four functions.  The first, init_serial(), initializes the 
selected UART to a defined baud rate.  The next two functions, com_getchar() 
and com_putchar(), are used to read and write a single character to the UART.  
These are both interrupt-driven functions, whose purpose is to ensure that there is 
no loss of data at high data rates.  The final function is com_tx_active(), which is 
used to check if the UART is transmitting data.  

Once the serial driver has been added, we can use RL-TCPnet in exactly the 
same way as we would use an Ethernet-based system.  However, there are some 
dedicated SLIP and PPP functions, which are used to establish the serial 
connection.  If the RL-TCPnet application is acting as a client, it must actively 
open a connection to the server.  In this case there are two functions, 
ppp_connect() and slip_connect(), which dial up a remote system. 

ppp_listenconnect ("024345667", "<user>", "<password>"); 
slip_connect ("024345667"); 

In the case of the PPP protocol, we must also pass a username and a password.  
For a server application, there are two listen functions that initialize the 
connection and wait for a client to connect. 

ppp_listen();                     slip_listen(); 

Once connected, we can monitor the state of the SLIP or PPP link using the two 
functions below: 

ppp_is_up();                      slip_is_up(); 

Both these functions return TRUE if the serial link is working, or FALSE if it has 
been lost.  Once we have finished with the serial connection, it must be closed 
using the either of the functions below: 

ppp_close();                      slip_close(); 

Exercise:  PPP Connection 
 
This exercise demonstrates replacing the Ethernet driver with a serial driver 
configured for the Point-to-Point protocol. 
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Chapter 5.  RL-USB Introduction 
Today the Universal Serial Bus (USB) is the standard way to connect external 
peripherals to a Personal Computer (PC).  Consequently, if you are designing an 
embedded system that has to interact with a PC, your customers will expect it to 
use a USB port.  Although USB is not a simple protocol, the process of designing 
a USB peripheral has become a lot easier over the last few years.  In this chapter, 
we will outline the key concepts of the USB protocol.  Afterwards we will 
consider using the RL-USB driver to design a number of USB-based peripherals.  
The USB driver in RL-ARM can be used standalone or with RTX. 

The USB Protocol – Key Concepts 
The USB protocol was first introduced in 1996.  It is supported by the Windows 
operating system from Windows 2000 onwards.  USB is a high-speed serial 
interface designed to be “plug and play” making it easier to add peripherals.  It 
aims to allow end users to build sophisticated computing systems without having 
to worry about the underlying technology.  This ease of use comes at the expense 
of a great deal of design complexity.  To design USB peripherals, you need to 
understand the microcontroller firmware, the USB protocol, the USB Device 
Classes and the USB host operating system.  This is much easier now that the 
USB protocol has reached a mature stage of adoption. 

USB Physical Network 
The USB network supports three 
communication speeds.  Low 
speed runs at 1.5 Mbit/s and is 
primarily used for simple devices 
like keyboards and mice.  Full 
speed runs at 12 Mbit/s and is 
suitable for most other 
peripherals.  Finally, High speed 
runs at 480 Mbit/s and is aimed 
at video devices that require high 
bandwidth. 
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The physical USB network is implemented as a tiered star network.  The USB 
host provides one attachment port for an external USB peripheral.  If more than 
one peripheral is required, connect a hub to the root port and the hub will provide 
additional connection ports.  For a large number of USB peripherals add further 
hubs to provide the ports needed.  The USB network can support up to 127 
external nodes (hubs 
and devices).  It 
supports six tiers of 
hubs and requires one 
bus master. 

Each hub or device 
may be self-powered 
or bus-powered.  If a 
device is bus-powered, 
it can consume a 
maximum of 500mA at 
5V. 

Logical Network 
To the developer the logical USB network appears as a star network.  The hub 
components do not introduce any programming complexity and are essentially 
transparent as far as the programmer is concerned.  Therefore, if you develop a 
USB device by connecting it to a root port on the host, the same device will work 
when connected to the host via several intermediate hubs. 

To the programmer the USB 
network appears as a star 
network with the host at the 
centre.  All the USB devices are 
available as addressable nodes.  
The other key feature of the 
USB network is that it is a 
master/slave network.  The USB 
host is in control.  On the 
network, this is the only device 
that can initiate a data transfer. 
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With USB 2.0, peer-to-peer communication is not possible.  USB On-The–Go 
(OTG) is an extension to the USB 2.0 specification, which directly supports peer-
to-peer communication.  For example, allowing pictures stored on a camera to be 
transferred directly onto a USB memory stick without the need for a host or other 
USB master. 

Since the USB network is designed to be “plug and play”, the host has no 
knowledge of a new device when it is first plugged onto the network.  It first 
needs to determine the bit-rate required to communicate to the new device.  This 
is done by adding a pull-up resistor to either the D+ or D- line.  If the D+ line is 
pulled up, the host will assume that a full speed device has been added.  A pull-
up on D- means low speed.  High-speed devices first appear as full speed and 
then negotiate up to high speed, once the connection has been established. 

USB Pipes And Endpoints 
Once a device has been connected to the host and the signaling speed has been 
determined, the host can start to transfer data to and from the new device.  Data 
packets are transferred over a set of logical connections called pipes.  A pipe 
originates from a buffer in the host.  It is connected to a remote device with a 
specific device address.  The pipe is terminated inside the device at an Endpoint. 

In microcontroller terms, the 
Endpoint may be viewed as a 
hardware buffer where the data is 
stored.  The Endpoint also 
generates an interrupt, which 
signals to the Central Processing 
Unit (CPU) that a new data 
packet has arrived.  In the case of 
an IN pipe (transferring data into 
the host) the Endpoint buffer 
must be filled with data.  The 
host will request this data.  Once 
the data has been transferred, an 
interrupt will be generated and 
the CPU or DMA unit must refill 
the Endpoint buffer with fresh 
data. 
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These logical pipes are 
implemented on the 
serial bus as time 
division multiplexing on 
the USB network.  Each 
pipe can make a data 
transaction within a 
frame.  The bus is 
precisely defined into 
1msec frames.  Every 
1ms the host PC sends a 
Start-of-Frame (SOF) 
token to define the 12 Mbit/s bus into a series of frames.  Each pipe is allocated a 
slot in each frame, so that it can transfer data as required. 

USB supports several different types of pipes with different transfer 
characteristics.  This is in order to support the needs of different types of 
application.  It is possible to design a USB device capable of supporting several 
different configurations.  These can then be dynamically changed to match the 
running host application.  The types of pipes available are: Control, Interrupt, 
Bulk, and Isochronous.  All of these pipes are unidirectional, except the control 
pipe that is bidirectional.  The Control pipe is reserved for the host to send and 
request configuration information to and from the device.  Generally, the 
application software does not use it.  The unidirectional pipes are defined as 
either IN pipes, which transfer data from the device to the host, or OUT pipes, 
which transfer data from the host to the device.  When a device is connected to a 
USB network, it will always assume network address 0.  The host uses a 
bidirectional control pipe to connect to Endpoint 0.  The host and the device then 
go through an enumeration process.  During this process, information about the 
USB device is sent to the host.  The host also assigns the device a network 
address.  This keeps address 0 free for new devices. 

The remaining types of pipe are used solely for the user application.  Typically, 
within the USB peripheral of a microcontroller the physical Endpoints are 
grouped as logical pairs.  Endpoint 1 will consist of two physical Endpoints.  One 
is used to send data in to the USB host and one is used to receive data out from 
the USB host. 
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Interrupt Pipe 
The first of the varieties of user pipe is an interrupt pipe.  Since only the host can 
initiate a data transfer, no network device can asynchronously communicate to 
the host.  Using an Interrupt pipe, the developer can define how often the host 
can request a data transfer from the remote device.  This can be between 1ms and 
255ms.  An interrupt pipe in USB has a defined polling rate.  For example, in the 
case of a mouse, we can guarantee a data transfer every 10 ms.  Defining the 
polling rate does not guarantee that data will be transferred every 10 ms, but 
rather that the transaction will occur somewhere within the tenth frame.  For this 
reason, a certain amount of timing jitter is inherent in a USB transaction. 

Isochronous Pipe 
The second type of user pipe is called an isochronous pipe.  Isochronous pipes 
are used for transferring real-time data such as audio data.  Isochronous pipes 
have no error detection.  An Isochronous pipe sends a new packet of data every 
frame, regardless of the success of the last packet.  This means that in an audio 
application a lost or corrupt packet will sound like noise on the line until the next 
successful packet arrives.  An important feature of Isochronous data is that it 
must be transferred at a constant rate.  Like an Interrupt pipe, an Isochronous 
pipe is also subject to the kind of jitter described above.  In the case of 
Isochronous data, no interrupt is generated when the data arrives in the Endpoint 
buffer.  Instead, the interrupt is raised on the Start-Of-Frame token.  This 
guarantees a regular 1 ms interrupt on the Isochronous Endpoint, allowing data to 
be read at a regular rate. 

Bulk Pipe 
The Bulk pipe is for all data which is not Control, Interrupt, or Isochronous.  
Data is transferred in the same manner and with the same packet sizes as in an 
Interrupt pipe, but Bulk pipes have no defined polling rate.  A Bulk pipe takes up 
any bandwidth that is left over after the other pipes have finished their transfers.  
If the bus is very busy, then a bulk transfer may be delayed.  Conversely, if the 
bus is idle, multiple bulk transfers can take place in a single 1ms frame.  Interrupt 
and isochronous are limited to a maximum of one packet per frame.  An example 
of bulk transfers would be sending data to a printer.  As long as the data is 
printed in a reasonable time frame, the exact transfer rate is not important. 
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Bandwidth Allocation 
The USB protocol is a master slave protocol so all communication is initiated by 
the host.  Therefore, it is up to the host to determine what pipe packets are 
contained in each USB frame.  Any ending Control and Isochronous pipe packets 
will always be sent.  During enumeration, any interrupt pipes will specify their 
required polling rate.  Any remaining bandwidth will then be available for use by 
Bulk pipes.  The host must also manage the loading of the USB network when 
multiple USB devices are connected.  Control pipes are allocated 10% of the total 
USB bandwidth.  Interrupt and Isochronous pipes are given 90%.  Bulk pipes use 
any idle periods on the network.  These are maximum allocations; so on most 
networks there will be plenty of unused bandwidth.  If a new device is connected 
to the network, the host will examine its communication requirements.  If these 
exceed the bandwidth available on the network the host will not allow it to join 
the network. 
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Device Configuration 
When a device is first connected to the USB host, its signaling speed is 
determined.  It has Endpoint 0 configured to accept a Control pipe.  In addition, 
every new device that is plugged onto the network is assigned address 0.  This 
way the USB host knows which bit rate to use.  It has one control channel 
available at address 0 Endpoint 0.  This Control pipe is then used by the host-PC 
to determine the capabilities of the new device and to add it to the network.  This 
process is called “Enumeration”.  Therefore, in addition to configuring the USB 
peripheral within the microcontroller, you need to provide some firmware that 
responds to the USB host enumeration requests.  The data requested by the host 
is held in a hierarchy of descriptors.  The device descriptors are arrays of data, 
which fully describe the USB device’s communication interface. 

The descriptors are simply arrays of data, which must be transferred to the host in 
response to enumeration requests.  As you can see from the picture above, it is 
possible to build complex device configurations.  This is because the USB 
network has been designed to be as flexible and as future-proof as possible.  
However, the minimum number of descriptors required is a device descriptor, 
configuration descriptor, interface descriptor, and three Endpoint descriptors (one 
control, one IN and one OUT pipe). 
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Device Descriptor Device Descriptor 
At the top of the descriptor tree is the Device Descriptor.  This descriptor 
contains the basic information about the device.  Included in this descriptor are a 
Vendor ID and a Product ID field.  These are two unique numbers identifying 
which device has been connected.  The Windows operating system uses these 
numbers to determine which device driver to load. 

At the top of the descriptor tree is the Device Descriptor.  This descriptor 
contains the basic information about the device.  Included in this descriptor are a 
Vendor ID and a Product ID field.  These are two unique numbers identifying 
which device has been connected.  The Windows operating system uses these 
numbers to determine which device driver to load. 

The Vendor ID number is the number assigned to each company producing USB-
based devices.  The USB Implementers’ Forum is responsible for administering 
the assignment of Vendor IDs.  You can purchase a Vendor ID from their web 
site, www.usb.org

The Vendor ID number is the number assigned to each company producing USB-
based devices.  The USB Implementers’ Forum is responsible for administering 
the assignment of Vendor IDs.  You can purchase a Vendor ID from their web 
site, www.usb.org, if you want to use the USB logo on your product.  Either way 
you must have a Vendor ID if you want to sell a USB product on the open 
market.  

The Product ID is a second 16-bit field containing a number assigned by the 
manufacturer to identify a specific product.  The device descriptor also contains a 
maximum packet size field. 
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Configuration Descriptor 
The Configuration descriptor contains information about the device’s power 
requirements and the number of interfaces it can support.  A device can have 
multiple configurations.  The host can select the configuration that best matches 
the requirements of the application software it is running. 
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Interface Descriptor 
The Interface descriptor describes a collection of Endpoints.  This interface 
supports a group of pipes that are suitable for a particular task.  Each 
configuration can have multiple interfaces and these interfaces may be 
dynamically selected by the USB host.  The Interface descriptor can associate its 
collection of pipes with a device class that has an associated class device driver 
within the host operating system.  The device class is typically a functional type 
such as printer class or mass storage class.  These class types have an associated 
driver within the Windows operating system.  This will be loaded when a new 
USB device in their class is connected to the host.  If you do not select a class 
type for your device, none of the standard USB drivers will be loaded.  In 
this case, you must provide your own device driver. 
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Endpoint Descriptor 
The Endpoint descriptor transfers configuration details of each supported 
Endpoint in a given interface, such as the: 

 Transfer type supported,  
 Maximum packet size,  
 Endpoint number, and  
 Polling rate (if it is an interrupt pipe). 

This is not an exhaustive list of all the possible descriptors that can be requested 
by the host.  However, as a minimum, the USB device must provide the host with 
device, configuration, interface, and Endpoint descriptors.  Once the device has 
successfully joined the USB network, the USB host sends further setup 
commands.  It will be instructed to select a configuration and an interface to 
match the needs of the application running on the USB host.  Once a 
configuration and an interface have been selected, the device must service the 
active Endpoints to exchange data with the USB host. 
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RL-USB 
RL-USB is an easy-to-use USB software stack that provides a common API 
across a range of USB peripherals found on different microcontroller devices.  
RL-USB can communicate with a custom Windows device driver.  Class support 
is provided for HID, MSC, ADC, and CDC devices.  Together, these classes 
provide USB design support for the majority of small, embedded devices.  Class 
support uses the native device drivers within the Windows operating system.  
This removes the need to develop and maintain a Windows device driver and 
greatly simplifies the development of a USB device. 

RL-USB Driver Overview 
To support many types of data 
transfers, the RL-USB driver is 
highly configurable.  A driver 
structure overview is given before 
looking at specific examples. 

The RL-USB stack offers support 
for the HID, MSC, CDC, and ADC 
USB classes.  Each class has its 
own collection of Endpoints and 
Interface descriptors, and allows integrating several classes into one device.  For 
example, add HID support to transfer small amounts of configuration information 
to and from the device.  The information is transferred to the host during 
enumeration.  The host can then switch between device interfaces depending on 
what type of software it is running.  For example, a data logger obtains the hosts 
configuration information, but also transfers large amounts of logged data stored 
on an SD card.  Such a device could be configured as a HID device allowing a 
client application on the host to send small amounts of data.  The same device 
could be configured as a storage device.  The user could then browse the device 
file system the way he would browse a flash pen drive and retrieve the logged 
data as a standard file.  A Composite Device is a USB device that supports more 
than one class. 

The RL-USB driver is very flexible in order to meet the needs of different USB 
applications.  The layout of the driver is more complex than the RL-TCPnet 
library.  To fully understand the RL-USB driver, take some time to look through 
each of the source files to get familiar with its layout.   



Getting Started: Building Applications with RL-ARM 123 

The RL-USB stack is made up of the following files: 

 usbcfg.h - is a templated configuration file that allows you to enable class 
support for the Human Interface, Mass Storage, and Audio classes. Is is also 
used to set the USB configuration and to enable interrupt handlers for the 
following events: 

• Device events: such as start of frame, USB bus reset, USB wakeup. 

• Endpoint events: Interrupts raised when an IN or OUT packet is 
transferred from a given interrupt. 

• USB core events: These respond to commands such as set interface sent on 
the control pipe (Endpoint 0). 

 usbuser.c - this module contains event handlers for Endpoints 1 – 15.  These 
interrupt handlers allow you to read and write data to the individual endpoint 
buffers. 

 usbdesc.c - this module contains the USB descriptors sent to the host during 
enumeration.  These are arrays of data that must mirror the configuration of 
the RL-USB driver firmware.  If you make a mistake here, nothing will 
work! 

 usb.h - this file provides an extensive set of #defines for use in the usbdesc.c 
file.  This allows you to construct the descriptors in “natural language” rather 
than arrays of numbers.  This is a huge help in constructing correct 
descriptors. 

 usbhw.c - this file provides the necessary low level code for a given USB 
controller.  Normally, you will not need to edit this file. 

 usbcore.c - this file contains the bulk of the generic RL-USB code.  
Normally, you will not need to edit this file. 

 usbhid.c - this is the support file for the HID class.  By default, the HID class 
is configured to transfer one byte IN and OUT packets to the host.  The HID 
class will support a maximum packet size of 64 bytes. 

 usbmsc.c - this is the support file for the mass storage class.  The RL-USB 
MSC driver links directly to the RL-FlashFS, so normally, you will not need 
to edit this file. 

 usbadc.c - this is the support file for the Audio class support.  This class 
transfers data by isochronous packets and you will need to add the necessary 
code to transfer this data to and from your audio peripherals. 
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First USB Project 
The RL-USB driver may be used 
standalone or with the RTX 
RTOS.  The RL-USB driver is 
contained in four source modules 
and one templated include file.  
The bulk of the RL-USB driver 
code is located in usbcore.c. 
Generally, you do not need to 
modify this code.  The device-
specific code is located in 
usbhw.c.  A version of this file is provided for all supported microcontrollers.  
Any functions that need to be customized to handle USB bus events, such as 
suspend and resume, are located in usbuser.c.  The USB descriptors are all located 
in usbdesc.c.  The configuration options for the RL-USB driver are located in 
usbcgf.h.  When using the RL-USB driver, you must always remember that all 
configuration options are made on two levels.  On one level, we are configuring 
the hardware and providing the code to service the enabled Endpoints.  On 
another level, we are configuring the Device Descriptors to describe the hardware 
configuration to the USB host. 

Configuration 
The configuration options in 
usbcfg.h are split into three main 
categories.  The first category is 
the USB configuration section.  
The entries in this section are 
used to configure the USB 
hardware.  If you make any 
changes here, you must also modify the USB descriptor strings.  We will 
examine the USB descriptors in the next section. 

The first option allows you to define the device’s power source: either from a 
local power supply or from the USB bus.  Next, we can define the number of 
interfaces.  For a simple device, this will be one.  However, if you are designing a 
composite device, supporting more than one USB class, you will need an 
interface for each supported class.  Then, we must define the maximum number 
of Endpoints used.  In the RL-USB, stack Endpoints are defined as logical 
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Endpoint pairs.  Each Endpoint supports an IN and an OUT pipe.  Consequently, 
we define the maximum number of Endpoints as a multiple of 2.  The next option 
allows us to define the maximum packet size for Endpoint 0.  The default transfer 
size on Endpoint 0 is 8 bytes.  As we will see later, this can be increased to a 
maximum of 64 bytes, for faster transfer of data.  Finally, if present, the 
microcontroller DMA unit can be enabled and configured to transfer data to and 
from selected Endpoint buffers. 

#if USB_RESET_EVENT 
  void USB_Reset_Event (void)  { 
    USB_ResetCore (); 
  } 
#endif 

Event Handlers 
The next set of options in usbcfg.h allows us to 
configure the USB event handlers.  We can 
enable support for USB bus events.  Depending 
on the USB controller, these may be handled by 
the USB controller hardware or may need 
additional software support.  Each enabled event 
has a matching function in usbuser.c.  The critical 
functions, such as reset_ event() will be provided, 
but optional functions, such as start of frame 
event will be empty stubs, and you will need to 
provide custom code.  There are similar event handlers for each of the enabled 
Endpoints.  Each Endpoint function is responsible for maintaining the IN and 
OUT buffers for the given Endpoint. 

/************************************************** 
*  usbuser.c 
**************************************************/ 
void USB_EndPoint1 (DWORD event)  { 
 
  switch (event)  { 
    case USB_EVT_IN: 
      GetInReport (); 
      USB_WriteEP (0x81, &InReport, sizeof (InReport)); 
      break; 
    case USB_EVT_OUT: 
      USB_ReadEP (0x01, &OutReport); 
      SetOutReport (); 
      break; 
  } 
} 
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The exception is Endpoint 0.  The event handler 
for Endpoint 0 is located in usbcore.c.  As this 
Endpoint handles the control pipe, it is not 
necessary to modify this function. 

The RL-USB driver also provides some additional call-back functions to handle 
additional USB control events.  These are generally needed for more complex 
designs of composite devices that have multiple configurations and interfaces. 

The set_configuration() and set_interface() 
functions are triggered when the USB host 
requests a particular configuration or interface 
that the device has defined during its enumeration 
with the USB host.  The set_feature() function 
allows the USB host to send application control information to the device.  For 
example, it might send a volume setting in the case of an audio application. 

USB Descriptors 
Once you have configured the USB hardware, it is also necessary to modify the 
USB Device Descriptors, so that they match the hardware configuration.  The 
USB Device Descriptors are simply arrays of formatted data.  They are contained 
in the usbdesc.c module.  As the USB specification is designed to support a wide 
range of devices, the USB Device Descriptors can be complex to construct and 
test.  RL-USB provides an additional header file usb.h to assist in the construction 
of Device Descriptors.  This provides a set of macros and type definitions for the 
key USB Device Descriptors. 

In the Device Descriptor, you need to enter your VendorID and ProductID.  The 
Endpoint zero maximum packet size is automatically passed from the usbcfg.h 
setting.  The remaining key descriptors are created as one large array.  They are: 
Configuration Descriptors, Interface Descriptors, and Endpoint Descriptors. 

/************************************************** 
*  usbdesc.c 
**************************************************/ 
const U8 USB_DeviceDescriptor [] =  { 
  …  
  USB_MAX_PACKET0,      // bMaxPacketSize0  
  WBVAL (0xC251),       // idVendor    
  WBVAL (0x1701),       // idProduct   
  …  
}; 
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const U8 USB_ConfigDescriptor[] =  { 
  …                              // config descriptor 
  USB_CONFIG_BUS_POWERED         // bmAttributes  
  USB_CONFIG_POWER_MA(100),      // bMaxPower  
  …                              // config descriptor continued 
  USB_INTERFACE_DESCRIPTOR_TYPE, // bDescriptorType  
  …                              // Interface descriptor 
  USB_ENDPOINT_DESCRIPTOR_TYPE,  // bDescriptorType  
  …                              // endpoint descriptor 
}; 

In the configuration descriptor, you must define the device as self-powered, 
USB_CONFIG_SELF_POWERED, or bus-powered 
USB_CONFIG_BUS_POWERED.  If the device is bus-powered, you must also 
provide its power requirement in mill amperes divided by two.  The usbdesc.c 
module also contains the string descriptors, which are uploaded to the host for 
display when the device first enumerates. 

Each character in the string descriptor is represented as a 16-bit Unicode 
character and the overall length is the string length plus two. 

If you are developing your own device driver for the PC, you can complete the 
interface and Endpoint descriptors to match your device configuration.  This will 
allow the USB device to enumerate and begin communication with your device 
driver.  However, the RL-USB driver also includes support for standard USB 
classes.  This allows us to take advantage of the native USB driver within 
Windows.  The class support within RL-USB will meet the requirements of 80% 
- 90% of most small, embedded systems.  This route is far easier and faster than 
developing your own device driver.  A vast number of USB-based devices are 
using these classes.  This ensures that the native class device drivers within 
Windows are very stable and will have guaranteed support and maintenance for 
the near future. 

Class Support 
The RL-USB driver currently has support for the Human Interface Device (HID), 
Mass Storage (MSC), Audio Device Class (ADC), and the legacy serial port in 
the Communications Device Class (CDC).  Each of the supported classes can be 
enabled in the final section of usbcfg.h.  Each USB class has a custom C module 
that must be added to your project. 
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Human Interface Device 
The Human Interface Device (HID) within Windows is primarily used to support 
USB mice and keyboards.  The HID driver can also be used to interface any other 
I/O device.  For an embedded system, the HID driver can be used to pass control 
and configuration information between a host client and the embedded 
application. 

Once the HID support has been 
enabled in the usbcfg.h file, you 
must add the hiduser.c module to 
provide the class support.  This 
module provides the necessary C 
code to handle the USB host 
control packets associated with 
the HID class.  In addition, you 
must also modify the device 
descriptors to match the USB 
peripheral configuration. 

/************************************************** 
*  usbdesc.c 
**************************************************/ 
USB_INTERFACE_DESCRIPTOR_TYPE,           // bDescriptorType  
  0x00,                                  // bInterfaceNumber  
  0x00,                                  // bAlternateSetting 
  0x01,                                  // bNumEndpoints  
  USB_DEVICE_CLASS_HUMAN_INTERFACE,      // bInterfaceClass  
  HID_SUBCLASS_NONE,                     // bInterfaceSubClass  
  HID_PROTOCOL_NONE,                     // bInterfaceProtocl 

In the Interface descriptor we can enable HID class support.  The HID driver has 
dedicated protocols to support mice and keyboards.  If we do not enable a 
specific HID protocol (HID_SUBCLASS_NONE, HID_PROTOCOL_NONE), the 
USB host requests additional Report descriptors.  These Report descriptors allow 
you to define a custom protocol for our device. 

HID Report Descriptors 
The Report descriptor has a well-defined description language, which allows you 
to define the structure of data exchanges between the USB host and your device.  
The specification for the HID Report descriptor can be downloaded from the 
USB Implementers’ Forum, together with an HID descriptor tool, which can be 
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used to define and test an HID descriptor.  Here we examine the basic structure 
of the HID report descriptor and make modifications to get useful applications.  
The Report descriptor consists of a series of items.  Each item begins with an 
item TAG that describes the item’s function, scope, and size. 

Five main tags define 
the Report descriptor 
structure.  The first 
three define the input 
data structure, output 
data structure, and 
configuration features.  
Another two tags, the 
collection tag and the 
end-collection tag, 
group together the 
associated input, 
output, and feature items as shown in the picture.  This 
allows the Windows HID driver to communicate with the 
USB device. 

The simplest devices have one collection that defines the 
input and output data structures.  A more complex device 
may consist of several such collections.  To construct a 
Report descriptor, we can use the file hid.h.  This file 
contains a series of macros that define the Report 
descriptor tags.  To understand how these are used, we will examine the Report 
descriptor used in the basic HID example, which may be found in the 
C:\KEIL\ARM\BOARDS directory.  

In this example, the host sends one byte to the device to control the state of eight 
LEDs.  The device then sends one byte to the host.  The first three bits report the 
state of three general purpose input/output (GPIO) pins configured as inputs.  
The remaining five bits are unused. 

HID_UsagePageVendor (0x00), 
HID_Usage (0x01), 

The Report descriptor begins by defining the device’s function through a usage 
page.  The HID specification defines standard application profile pages for 
common functions.  These are defined in the HID usage table document, which 
can be downloaded from the USB Implementers’ Forum.   
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Here, we define a unique vendor profile.  The HID Usage is an index pointing to 
a subset within the usage page.  Once the usage table has been defined, open the 
collection of input and output items.  Remember, everything in the USB protocol 
is host-centric, so data goes IN to the host and OUT from the host to the device. 

HID_Collection(HID_Application), 

Here, we define a collection of application data.  Other types of collections 
include physical (raw data from a sensor) and logical data (different types of data 
grouped in a defined format).  Remember when writing the HID client to stay 
consistent at both ends.  Next, define the input data structure: 

HID_Collection (HID_Application), 
  HID_LogicalMin (0),                // data range 0 – 255 
  HID_LogicalMaxS (0xFF), 
  HID_ReportSize (8),                // 8 bits or 1 byte per ‘item’ 
  HID_ReportCount (1),               // one ‘item’ or one byte total sizes 
  HID_Usage (0x01), 
  HID_Input (HID_Data | HID_Variable | HID_Absolute), 

In the input item, take advantage of the usage pages to describe data as button 
information.  HID_ReportSize() defines the number of bits in each input item.  
HID_ReportCount() defines the number of items in the report.  In this case, we 
are defining three bits.  This also means that the logical minimum and maximum 
will be zero and one.  These values allow us to define a range of expected data 
values for larger report sizes.  The HID input tag defines these three bits as 
variable data.  The HID_absolute value means that the HID driver will not apply 
any scaling values before it presents the data to the client.  Next, define the 
output item.  Again, this is a single byte used to control eight LEDs. 

  HID_UsagePage (HID_USAGE_PAGE_LED), 
  HID_Usage (HID_USAGE_LED_GENERIC_INDICATOR), 

At the beginning of the output item, define the usage page as LED data and 
describe it as indicator LEDs.  Next, define the item format.  HID_ReportSize() 
defines the number of bits in each field.  HID_ReportCount() defines the number 
of data fields.  Again, logical minimum and maximum define the range of 
allowed data values.  Finally, define this as output HID data, which will vary 
over time and no scaling is applied. 

  HID_LogicalMin(0), 
  HID_LogicalMax(1), 
  HID_ReportCount(8), 
  HID_ReportSize(1), 
  HID_Output(HID_Data | HID_Variable | HID_Absolute), 
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Once the input and output items have been defined, we can complete the Report 
descriptor by closing the collection. 

  HID_EndCollection 
}; 

By default, the HID OUT packet is sent to 
Endpoint 0 as a set_report control packet.  
Endpoint 0 is normally reserved for control 
information, but it is the way that the driver 
works.  The IN packet is sent from Endpoint 1.  
The Endpoint events must be enabled for both of these Endpoints. 

The IN packet is configured as an interrupt pipe.  Its update rate and maximum 
packet size are defined in the Endpoint descriptor. 

USB_ENDPOINT_DESCRIPTOR_TYPE,        // bDescriptorType  
  USB_ENDPOINT_IN(1),                // bEndpointAddress  
  USB_ENDPOINT_TYPE_INTERRUPT,       // bmAttributes  
  WBVAL(0x0004),                     // wMaxPacketSize  
  0x20,                              // 32ms    // bInterval  

Once the descriptor configuration is complete, the application code can start the 
RL-USB driver running. 

__task void USB_Start (void)  { 
 
  USB_Init ();                       // USB Initialization  
  USB_Connect (__TRUE);              // USB Connect  
  os_tsk_delete_self ();             // Terminate Task  
} 

When the driver has been started, any task can exchange data with the USB host.  
The USB host will request data packets on Endpoint 1 at the rate you have 
defined in the Endpoint descriptor.  In usbuser.c the Endpoint 1 handler is 
responsible for updating the Endpoint 1buffer with the current status of the 
button data. 

void USB_EndPoint1 (DWORD event)  { 
 
  switch (event)  { 
    case USB_EVT_IN: 
      GetInReport (); 
      USB_WriteEP (0x81, &InReport, sizeof (InReport)); 
    break; 
  } 
} 
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The button data is held in a single byte, InReport.  This variable is updated by the 
GetInReport() function, is a user function placed in main.c.  Your application 
must update the InReport variable, which is defined in the main.c module.  In this 
example, the InReport consists of a single byte, which holds the current switch 
values. 

if ((FIO2PIN & PBINT) == 0)  {        // Check if PBINT is pressed  
  InReport = 0x01; 
} 
else  { 
  InReport = 0x00; 
} 

Data packets sent out from the USB host are handled by a similar mechanism.  
Data sent out from the host is sent on Endpoint 0.  This Endpoint is normally 
reserved for control information, so, by default, the OUT data is transferred in 
set_report control sequences.  The Endpoint 0 handler receives the set_report 
sequence.  This triggers the HID_set_report() function in the hiduser.c module, 
which reads the data and places it into the variable OutReport. 

BOOL HID_SetReport (void)  { 
 
  switch (SetupPacket.wValue.WB.H)  { 
    … 
    case HID_REPORT_OUTPUT: 
      OutReport = EP0Buf [0]; 
      SetOutReport (); 
    break; 
    … 
  } 
} 

Like the GetInReport() function, SetOutReport() is stored in demo.c and must 
contain the necessary code to pass the new data to your application. 

void SetOutReport (void)  { 
 
    FIO2SET = OutReport; 
} 

Exercise:  HID project 
 
This project uses the HID class driver to exchange single bytes of data with a 
PC. 
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HID Client 
Once the USB firmware has been configured on the microcontroller, it will 
enumerate with the host.  It can then begin to transfer data to and from the 
Windows HID driver.  The next task is to access the relevant HID driver from an 
application program running on the host.  Access to the HID driver is made 
through Win32 API calls.  This can be complicated if you are not used to host 
programming.  However, the source code for a complete HID client application is 
located in C:\KEIL\ARM\UTILITIES\HID_CLIENT.  The client HID can be rebuilt with 
Visual C++.  You will also need the Microsoft Driver Development Kit, which 
can be downloaded from the Microsoft web site.  To make life easy, all of the 
necessary Win32 API calls have been placed in wrapper functions in the HID.c 
module.  This allows them to be easily reused to build a new custom client. 

When a new device is attached to the USB network, it enters the enumeration 
process with the USB host, identifying itself as an HID device.  On a host, this 
causes the Windows operating system to load a new instance of its HID driver.  
The HID driver is created with a new Globally Unique Identifier (GUID).  This is 
a 128-bit number identifying the type of object and its access control.  When a 
HID client is started on the host, it can examine the current Windows system for 
running HID drivers. 

HID_Init (); 
int HID_FindDevices (); 

The first two functions are used to initialize the HID client and clear the list of 
attached devices.  Next, the HID_FindDevices() function builds a list of currently 
connected HID devices and their capabilities.  The results of this function call are 
held in a set of structures.  By examining the data held in these structures, you 
can locate your device from its VendorID and ProductID or other unique feature. 

BOOL HID_GetName (int num, char *buf, int sz); 

For a more general purpose, the product strings can be read by calling the 
HID_GetName() function.  The product string data can be displayed in the client, 
allowing the user to make the selection. 

BOOL HID_Open (int num); 

Once an HID device has been selected, the HID_Open() function is used to 
connect the client to the HID driver.  This is done using the Win32 CreateFile() 
API call. 
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Once we have located the driver and opened the connection, two further read and 
write functions allow us to exchange data with the attached HID device. 

BOOL HID_Read (BYTE *buf, DWORD sz, DWORD *cnt); 
BOOL HID_Write (BYTE *buf, DWORD sz, DWORD *cnt); 
void HID_Close (); 

Finally we can end our connection with the HID driver by calling the 
HID_Close() function. 

Enlarging the IN & OUT Endpoint Packet 
Sizes 
In a practical application, it will be necessary to transfer more than a single byte 
of data between the USB host and device.  You can change the Report descriptor 
to transfer the maximum packet size of 64 bytes in both directions, as shown 
below. 

#define INREPORT_SIZE    64 
#define OUTREPORT_SIZE   64 
BYTE InReport [INREPORT_SIZE];                 // HID Input Report 
BYTE OutReport [OUTREPORT_SIZE];               // HID Output Report 
const BYTE HID_ReportDescriptor[] =  {         // HID Report Descriptor  
    HID_UsagePageVendor (0x00), 
    HID_Usage (0x01), 
    HID_Collection (HID_Application), 
    HID_LogicalMin (0), 
    HID_LogicalMaxS (0xFF), 
    HID_ReportSize (8),                        // bits 
    HID_ReportCount (INREPORT_SIZE),           // Bytes 
    HID_Usage (0x01), 
    HID_Input (HID_Data | HID_Variable | HID_Absolute), 
    HID_ReportCount (OUTREPORT_SIZE),          // Bytes 
    HID_Usage (0x01), 
    HID_Output (HID_Data | HID_Variable | HID_Absolute), 
    HID_EndCollection 
}; 

This is a more general Report descriptor, which can be modified easily to 
accommodate any custom IN and OUT packet size.  We can also move the OUT 
data pipe from Endpoint 0 to the Endpoint 1 OUT by defining an additional 
interrupt Endpoint descriptor, as shown below. 
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//  Endpoint, HID Interrupt Out 
  USB_ENDPOINT_DESC_SIZE,                       // bLength  
  USB_ENDPOINT_DESCRIPTOR_TYPE,                 // bDescriptorType  
  USB_ENDPOINT_OUT(1),                          // bEndpointAddress  
  USB_ENDPOINT_TYPE_INTERRUPT,       // bmAttributes  
  WBVAL(0x0040),                     // wMaxPacketSize= 64 
  0x20,                               

The Endpoint descriptor is added beneath the existing Endpoint 1 descriptor.  We 
must also make sure that the overall descriptor size reflects the addition of a new 
Endpoint.  This is done within the configuration descriptor as shown below. 

USB_CONFIGURATION_DESC_SIZE     + 
    USB_INTERFACE_DESC_SIZE     + 
    HID_DESC_SIZE               + 
    USB_ENDPOINT_DESC_SIZE      +    // EP1 IN 
    USB_ENDPOINT_DESC_SIZE           // New EP1 OUT descriptor 

You must also adjust the number of Endpoints defined in the interface descriptor. 

USB_INTERFACE_DESCRIPTOR_TYPE,       // bDescriptorType 
  0x00,                              // bInterfaceNumber 
  0x00,                              // bAlternateSetting 
  0x02,                              // bNumEndpoints 

Once the additional Endpoint is defined, the HID driver will stop sending data as 
set_report control transfers on Endpoint 0.  It will then begin sending OUT 
packets on Endpoint 1.  Now we must add code to receive the new OUT packets 
on Endpoint 1.  Remember that the physical Endpoints are unidirectional, but 
they are grouped as logical pairs.  Each logical Endpoint has a physical IN 
Endpoint and a physical OUT Endpoint. 

void USB_EndPoint1 (DWORD event)  { 
 
  switch (event)  { 
    case USB_EVT_IN: 
      GetInReport (); 
      USB_WriteEP (0x81, &InReport, sizeof (InReport)); 
      break; 
    case USB_EVT_OUT: 
      USB_ReadEP (0x01, &OutReport); 
      SetOutReport (); 
      break; 
  } 
} 

This now gives 64 byte IN and OUT packets, which are handled symmetrically 
on logical Endpoint 1.  The SetOutReport() and GetInReport() functions can now 
be modified to read and write the application data into the new InReport[] and 
OutReport[] arrays. 
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Within the client, we can use the existing code and just need to change the size of 
the IN and OUT reports. 

BYTE OutReport [64]; 
BYTE InReport [65]; 
 
if (!HID_Write (OutReport, sizeof (OutReport), &cnt))  { 
  OnError(); 
  return; 
} 
 
if (!HID_Read (InReport, sizeof (InReport), &cnt))  { 
  OnError(); 
  return; 
} 

The InReport[] array should be set to 65 bytes, not 64, as the report descriptor 
adds a byte to the beginning of the packet.  Hence, your application data will start 
from InReport[1]. 

Exercise:  Extended HID 
 
This example extends the HID example by enlarging the IN and OUT packets to 
64 bytes and moving the OUT pipe from Endpoint Zero to Endpoint One. 

Mass Storage 
The RL-USB driver also supports the Mass Storage class that connects an 
external storage device to the USB host.  The USB Mass Storage Class is a 
complex protocol that is difficult to implement.  The RL-USB driver provides all 
the necessary class support to link a host file system to the RL-Flash file system 
via USB and resides in the mscuser.c module.  This simply needs to be added to a 
project, which has already been configured with the RL-Flash file system. 

The Mass Storage Class is 
enabled in the usbcfg.h file, along 
with Endpoint 2.  Endpoint 2 
will provide symmetrical IN and 
OUT Endpoint buffers to allow 
bidirectional data transfer 
between the USB host and the 
device.  In usbdesc.c, the USB 
interface descriptor defines the 
device as being a member of the Mass Storage Class. 
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/*---------------------------------------------------------- 
/   Mass storage class interface descriptor  
----------------------------------------------------------*/ 
USB_INTERFACE_DESCRIPTOR_TYPE,       // bDescriptorType 
  0x00,                              // bInterfaceNumber 
  0x00,                              // bAlternateSetting 
  0x02,                              // bNumEndpoints 
  USB_DEVICE_CLASS_STORAGE,          // bInterfaceClass 
  MSC_SUBCLASS_SCSI,                 // bInterfaceSubClass 
  MSC_PROTOCOL_BULK_ONLY,            // bInterfaceProtocol 
  0x62,                              // iInterface  

The Mass Storage Class uses pipes, which have been configured to use bulk 
transfer.  Although the bulk transfer type has the lowest priority of the different 
pipe categories, it does have the advantage of being able to make multiple 
transfers within a USB frame (if the bandwidth is available).  Following interface 
descriptors are two Endpoint descriptors, which define the IN and OUT 
Endpoints. 

/*---------------------------------------------------------- 
/   Mass storage Endpoint descriptors 
----------------------------------------------------------*/ 
//  Bulk In Endpoint  
  USB_ENDPOINT_DESC_SIZE,            // bLength  
  USB_ENDPOINT_DESCRIPTOR_TYPE,      // bDescriptorType  
  USB_ENDPOINT_IN(2),                // bEndpointAddress  
  USB_ENDPOINT_TYPE_BULK,            // bmAttributes  
  WBVAL(0x0040),                     // wMaxPacketSize  
  0,                                 // bInterval  
 
//  Bulk Out Endpoint  
  USB_ENDPOINT_DESC_SIZE,            // bLength  
  USB_ENDPOINT_DESCRIPTOR_TYPE,      // bDescriptorType  
  USB_ENDPOINT_OUT(2),               // bEndpointAddress  
  USB_ENDPOINT_TYPE_BULK,            // bmAttributes  
  WBVAL(0x0040),                     // wMaxPacketSize  
  0,                                 // bInterval  
 
//  Terminator 

The mscuser.c file then provides the application interface to the RL-Flash file 
system.  Once the Mass Storage Class has been added to your application, it will 
directly interface to the RL-Flash file system and no further development work is 
necessary to enable it. 

However, when your device is connected, the host mass storage driver will 
take control of the storage volume, and the embedded file system must not 
be used to read or write data to files located in the storage volume.  You 
must include code to prevent the embedded firmware writing to files, when 
your device is connected to the host. 
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USB_Init(); 
while (1)  { 
  if (WakeUp)  { 
    WakeUp = __FALSE; 
    USB_Connect (__FALSE);                // USB Disconnect 
    sd_main ();                           // Call application code 
  } 
  else  { 
    if (mmc_init ())  {                   // Init MSC driver 
      mmc_read_config (&mmcfg);           // read card config 
      MSC_BlockCount = mmcfg.blocknr; 
      USB_Connect (__TRUE);               // USB Connect 
    } 
    while (!WakeUp);                      // wait until aplication  
  }                                       // wants file system 
} 

 
void sd_main (void)  { 
 
  init_card (); 
  while (1)  { 
    if (WakeUp)  { 
      WakeUp = __FALSE; 
      return; 
    } 
 
    // add application code here 
    // Set WakeUp to enable USB MSC  
  } 
} 

Exercise:  Mass Storage Example 
 
This example demonstrates the Mass Storage Class and allows files to be 
transferred from the PC to the RL-Flash drive using the Windows Explorer. 

Audio Class 
The RL-USB driver also supports an Audio Class Driver.  This allows us to 
stream audio data between the USB host and the device as Isochronous packets.  
Like the Mass Storage and HID classes, the Audio Class communicates with a 
standard driver within Windows.  Application programs running on the host, 
which requires an audio input and output, use this driver.  The RL-USB driver 
can be configured to support the Audio Class by adding the adcuser.c class-file to 
an RL-USB driver project. 
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In usbcfg.h, the Audio Class 
support has been enabled, and 
Endpoint 3 is used for the 
streaming audio data.  As in the 
HID class configuration, 
information is sent in the form 
set_request and get_request 
control transfers on Endpoint 0.  
The Device Descriptors are held 
in usbdesc.c. The descriptors 
define three interfaces: an Audio 
Class Control Interface (ADC 
CIF) and two Audio Class Streaming Interfaces (ADC SIF).  One streaming 
interface is configured as an output and one as an input. 

A typical application could use the OUT isochronous pipe to drive a speaker via 
a Digital-to-Analog Converter (DAC).  In the usbuser.c file, the Endpoint 3 
callback handler is used to receive the data packet.  It transfers data to a buffer 
using the CPU or DMA unit, if one is available.  The Audio Class driver in RL-
USB installs a Fast Interrupt Request (FIQ) interrupt.  This is used to write the 
data to the DAC and reproduce the audio stream.  The Audio Class also supports 
feature requests, which are sent on Endpoint 0.  These are used to pass control 
information from the host application to the audio device.  In the speaker 
demonstration, the Audio Control Interface is used to control the volume level 
and mute function. 

Exercise:  Audio Class Example 
 
This example demonstrates a speaker application using the Audio Class. 

Composite Device 
As we have seen in the previous sections, the RL-USB driver supports three of 
the most useful USB classes.  In some applications, it may be necessary to 
combine the functionality of two or more classes.  For example, you may wish 
your device to appear as a Mass Storage Device so that you can easily transfer 
large amounts of data.  It may also be useful for the device to appear as a HID 
device, in order to send small amounts of control and configuration data.  RL-
USB is designed so that each of the supported classes can be combined into one 
application to make a composite device. 
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To make a composite device, it is necessary to first create a project with the core 
USB modules.  Then we need to add the dedicated class support modules.  The 
class support and required Endpoints must be enabled in usbcfg.h. 

Next, you must add together the 
descriptors for each class.  This 
will create three full Interface 
descriptors and their associated 
Endpoint descriptors.  In the 
Configuration descriptor, you 
must increase the total number of 
interfaces.  Each interface must 
have a unique number.  Finally, 
you must add the Endpoint code 
for each enabled Endpoint and service these from your application. 

Exercise:  Composite Example 
 
This example demonstrates a composite device, which acts as both a HID device 
and a Mass Storage Class in one project. 

Compliance Testing 
Before releasing your USB device, it is necessary to ensure that it fully meets the 
USB specification.  A suite of USB compliance tests can be downloaded from the 
USB Implementers’ Forum.  This software is called the USB command verifier.  
It automatically tests your device’s response to the core USB setup commands 
and the appropriate device class commands.  It is also recommended that you 
perform as much plug and play testing with different hosts, hubs, and operating 
systems as you would expect to find in the field.  You can download the USB 
verifier software from www.usb.org/developers/tools. 
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Chapter 6.  RL-CAN Introduction 
The CAN (Controller Area Network) protocol was originally developed for 
networking in the automotive sector.  The aim was to replace the wiring loom in 
passenger vehicles.  CAN is characterized by relatively fast data transfer, good 
error detection, good recovery and low electromagnetic interference (EMI).  
Unlike Ethernet, its arbitration method can guarantee deterministic delivery of 
message packets within defined system latency.  It has been widely adopted into 
many industries as a de-facto standard for distributed control systems, as it is an 
ideal method of networking small, embedded systems.  This chapter examines 
the RL-CAN driver, which allows you to rapidly and easily build a CAN network 
with many different manufacturers’ CAN controller peripherals. 

The CAN Protocol – Key Concepts 
In the ISO 7-layer model, the 
CAN protocol covers the layer 
two, ”Data Link Layer”.  This 
involves forming the message 
packet, error containment, 
acknowledgement, and 
arbitration. 

CAN does not rigidly define 
layer one “Physical Layer”.  This 
means, that CAN messages may 
use many different physical 
mediums.  However, the most 
common physical layer is a 
twisted pair, and standard line 
drivers are available for it.  In a CAN network, the other layers in the ISO model 
are effectively empty, and your application code will communicate directly to the 
data link layer. 

The application code addresses the registers of the CAN peripheral directly.  In 
effect, the CAN peripheral can be used as a glorified UART, without the need for 
an expensive and complex protocol stack.  Since CAN is also used in Industrial 
Automation, there are a number of software standards defining how the CAN 
messages are used.  This is necessary in order to transfer data between different 
manufacturers’ equipment.   
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The two most popular of these application layer standards are CANopen and 
DeviceNet.  The sole purpose of these standards is to provide interoperability 
between different Original Equipment Manufacturers’ (OEM) equipment.  If you 
are developing your own closed system, then you do not need these application 
layer protocols.  You are free to implement your own proprietary protocol, which 
many developers do. 

CAN Node Design 
A typical CAN node is shown in 
the picture.  Each node consists 
of a microcontroller and a CAN 
controller.  The CAN controller 
may be fabricated on the same 
silicon as the microcontroller.  
Alternatively, it may be a 
standalone controller in a 
separate chip from the 
microcontroller.  The CAN 
controller is interfaced to the 
twisted pair by a CAN 
Transceiver.  The twisted pair is 
terminated at either end by a 120 
Ohm resistor.  The most 
common mistake with a first 
CAN network is to forget the 
terminating resistors and then 
nothing works. 

The CAN controller has separate 
transmit and receive paths to and 
from the Physical Layer device.  
This is an important feature of 
the CAN node.  Therefore, as the 
node is writing to the bus, it is 
also listening back.  This is the basis of the message arbitration and it also 
contributes to the error detection.  The two logic levels, which are written on to 
the twisted pair, are defined as follows; a logic one is represented by bus idle, 
with both wires held half way between 0 and VCC.  A logic zero is represented by 
both wires being differentially driven. 
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On the CAN bus, logic zero is represented by a maximum voltage difference 
called “Dominant.”  Logic one (1) is represented by a bus idle state called 
“Recessive”.  A dominant bit will overwrite a recessive bit.  Therefore, if ten 
nodes write recessive and one writes dominant, then each node will read back a 
dominant bit.  The CAN bus can achieve bit rates of up to a maximum of 1Mb/s.  
Typically, this can be achieved over 40 meters of cable.  Longer cable lengths 
can be achieved by reducing the bit rate.  In practice, you can get at least 1,500 
meters with the standard drivers at 10 Kbit/s. 

CAN Message Frames 
The CAN bus has two message objects, which may be generated by the 
application software.  These are the message frame and the remote request frame.  
The message frame is used to transfer data around the network.  The message 
frame is shown below. 

The CAN controller forms the message frame.  The application software provides 
the data bytes, the message identifier, and the RTR bit. 

The message frame starts with a dominant bit to mark the start of frame.  Next is 
the message identifier, which may be up to 29 bits long.  The message identifier 
is used to label the data being sent in the message frame.  CAN is a 
producer/consumer protocol or broadcast protocol.  A given message is produced 
from one unique node and then may be consumed by any number of nodes on the 
network simultaneously.  It is also possible to do point-to-point communication 
by making only one node interested in a given identifier.  Then a message can be 
sent from the producer node to one given consumer node on the network.  In the 
message frame, the RTR bit is always set to zero (this field will be discussed 
shortly).  The Data Length Code (DLC) field contains an integer between zero 
and eight, and indicates the number of data bytes being sent in this message 
frame.  You can send a maximum of 8 bytes in the message payload.  It is also 
possible to truncate the message frame to save bandwidth on the CAN bus.  After 
the 8 bytes of data, there is a 15-bit Cyclic Redundancy Check (CRC).  This 
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provides error detection and correction from the start of frame up to the 
beginning of the CRC field. 

After the CRC, there is an acknowledge slot.  The transmitting node expects the 
receiving nodes to insert an acknowledgement in this slot within the transmitting 
CAN frame.  In practice, the transmitter sends a recessive bit and any node, 
which has received the CAN message up to this point, will assert a dominant bit 
on the bus, thus generating the acknowledgement.  This means, that the 
transmitter will be satisfied if just one node acknowledges its message, or if 100 
nodes generate the acknowledgement.  This needs to be taken into account when 
developing your application layer.  Care must be taken to treat the acknowledge 
as a weak acknowledge, rather than assuming that it is confirmation that the 
message has reached all its destination nodes.  After the acknowledge slot, there 
is an end-of-frame message delimiter. 

The Remote Transmit Request (RTR) frame is used to request message packets 
from the network as a master/slave transaction.  Each CAN may also transmit a 

remote transmit request frame RTR.  The purpose of this frame is to request a 
specific message frame from the network.  The structure of the RTR frame is the 
same as the message frame except that it does not have a data field. 

A node can use an RTR frame to 
request a specific message frame 
from the CAN network.  To do 
this, the requesting node sends 
an RTR frame.  The Identifier is 
set to the address of the message 
frame it wants to receive and the 
RTR bit is set to one.  When the 
RTR frame is transmitted, it is broadcasted onto the network and received by all 
the network nodes.  Each node will see it as a remote request and will examine 
the message identifier.  The node that normally transmits that message identifier 
will then reply with a standard message frame (RTR bit = 0), which includes the 
requested message identifier and its current data. 
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As previously mentioned, the 
CAN message identifier can be 
up to 29 bits long.  There are two 
standards of CAN protocol, the 
only difference being the length 
of the message identifier. 

It is possible to mix the two 
protocol standards on the same 
bus, but you must not send a 29-
bit message to a 2.0A device. 

CAN Bus Arbitration 
If a message is scheduled to be transmitted on to the bus and the bus is idle, it 
will be transmitted and may be picked up by any interested node.  If a message is 
scheduled and the bus is active, it will have to wait until the bus is idle, before it 
can be transmitted.  If several messages are scheduled while the bus is active, 
they will start transmission simultaneously once the bus becomes idle, being 
synchronized by the start of frame bit.  When this happens, the CAN bus 
arbitration will take place to determine which message wins the bus and is 
transmitted. 
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CAN arbitrates its messages by a method called “non-destructive bit-wise 
arbitration”.  In the diagram, three messages are pending transmission.  Once the 
bus is idle and the messages are synchronized by the start bit, they will start to 
write their identifiers on to the bus.  For the first two bits, all three messages 
write the same logic and, hence, read back the same logic, so each node 
continues transmission.  However, on the third bit, nodes A and C write dominant 
bits, and node B writes recessive.  At this point, node B wrote recessive but reads 
back dominant.  In this case, it will back off the bus and start listening. 

Nodes A and C will continue transmission until node C writes recessive and node 
A writes dominant.  Now, node C stops transmission and starts listening.  Node 
A has won the bus and will send its message.  Once node A has finished, the 
nodes B and C will transmit. Node C will win and send its message.  Finally, 
node B will send its message.  If node A is scheduled again, it will win the bus 
even though the node B and C messages have been waiting.  In practice, the 
CAN bus will transmit the message with the lowest value identifier first. 

RL-CAN Driver 
As mentioned above, CAN has been widely adopted for distributed control 
within embedded systems.  Today, just about all microcontroller families include 
a variant, or variants, with a CAN controller peripheral.  However, each 
manufacturer’s CAN controller has a different set of special function registers 
and features.  The RL-ARM library includes a dedicated CAN driver, which 
provides a standard programming API for all supported microcontrollers.  The 
CAN driver uses RTX message queues to buffer data before it is transmitted or 
received.  The RL-CAN driver provides a quick and easy way to implement a 
CAN network.  The RL-CAN driver also provides code portability, in case you 
need migrating code to another microcontroller. 

First Project 
Unlike the other middleware components within the RL-ARM library, the RL-
CAN driver must be used with RTX. 

The RL-CAN driver consists of 
two C modules and associated 
header files.  The first module, 
RTX_CAN.c, is a generic layer 
driver, which provides the high 
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level API and message buffering.  The second file, CAN_hw.c, provides the low 
level code for a specific CAN peripheral.  Both modules have an include file, 
CAN_cfg.h, which is used to provide custom settings.  Like all the other 
configuration options in RL-ARM, CAN_cfg.h is a template file, which is 
graphically displayed in the µVision Configuration Wizard.  Each supported 
microcontroller has its own version of RTX_CAN.c, CAN_hw.c, and CAN_cfg.h file.  
Therefore, you must take care to add the correct files to your project.  In each of 
your program modules, you must include the RTX_CAN.h header file that defines 
the CAN driver functions. 

The configuration options in CAN_cfg.h vary depending on the microcontroller 
being used.  As a minimum, you will need to define the number of transmit and 
receive objects.  This is, in effect, the size of the transmit and receive queue 
available to the CAN controller.  If the microcontroller has more than one CAN 
peripheral, the CAN_cfg.h file will have options to enable the controllers you wish 
to use.  Finally, depending on the clock structure of the microcontroller, you may 
need to define the input clock value to the CAN controller.  This is necessary for 
the API functions to accurately calculate the CAN bit timing rate. 

CAN Driver API 
The CAN driver API consists of eight functions as shown below. 

The first three API functions are used to prepare a CAN controller to send and 
receive messages on the network. 

CAN_init (1, 500000); 
CAN_rx_object (1, 2, 33, STANDARD_FORMAT); 
CAN_start (1); 
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CAN_init() defines the bit rate of a given CAN controller.  The CAN driver 
supports microcontrollers with multiple CAN controllers.  Each CAN controller 
is referred to by a number that starts from one.  These numbers map directly onto 
the physical CAN controllers on the microcontroller in ascending order.  Here, 
CAN controller 1 runs at 500K bit/sec.  Next, the CAN_rx_object() function is 
used to define which message identifiers will be received into the selected CAN 
controller.  In the above example, we have selected CAN controller 1 to receive 
message ID 33.  The second parameter in the CAN_rx_object() function refers to 
the message channel.  We will look at this in the object buffer section later in this 
chapter.  You may also define whether the message ID is 11-bit (standard) or 29-
bit (extended) in length.  The CAN controller will only receive messages that 
have been defined with the CAN_rx_object() function.  Once we have defined all 
of the messages that we want to receive, the CAN controller must be placed in its 
running mode by calling the CAN_start() function. 

Basic Transmit and Receive 
Once the CAN controller has entered running mode it is possible to send and 
receive messages to and from the CAN network.  The CAN message format is 
held in a structure defined in CAN_cfg.h. 

typedef struct  { 
  U32 id;           // message identifier 
  U8  data [8];     // Message data payload 
  U8  len;          // Number of bytes in the message payload 
  U8  ch;           // CAN controller channel  
  U8  format;       // Standard (11-bit) ID or extended (29-bit) ID 
  U8  type;         // Data frame or remote request frame  
} CAN_msg; 

To send a message define the CAN message structure.  This structure reflects the 
fields of the CAN message frame.  In the example below, a message frame 
msg_send is defined with an identifier of 33, followed by eight bytes of user-
defined data.  The data length code is set to one, so that only the first data byte 
will be transmitted.  The message will be sent through channel 1.  The frame will 
start with an 11-bit identifier followed by a message frame. 

CAN_msg msg_send = { 
  33, 
  {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 
  1, 
  2, 
  STANDARD_FORMAT, 
  DATA_FRAME 
}; 



Getting Started: Building Applications with RL-ARM 149 

Then we call the CAN send function: 

CAN_send (1, &msg_send, 0x0F00); 

This will place the CAN message into the message queue.  The message queue is 
a First-In-First-Out (FIFO) buffer, so the messages are guaranteed to be sent in 
order.  The “number of transmit objects” in CAN_cfg.h defines the depth of the 
FIFO buffer in message frames.  If the FIFO becomes full, the CAN send 
function will wait for its timeout period for a message slot to become free.  As 
with other RTX functions, this will cause the task to enter the WAITING state, so 
that the next task in the READY state enter the RUN state. 

if (CAN_receive (1, &msg_rece, 0x00FF) == CAN_OK)  { 
    Rx_val = msg_rece.data [0]; 
} 

The CAN Receive function operates in a similar fashion.  As messages are 
received, they are placed into the receive-object FIFO.  The CAN Receive 
function is then used to access message frames in the FIFO.  If the FIFO is 
empty, the timeout period specifies the number of RTX clock ticks 
CAN_receive() will wait for a message to arrive. 

Exercise:  First Project 
 
The first RL-CAN driver project guides you through setting up the RL-CAN 
driver to transmit and receive CAN messages. 

Remote Request 
The RL-CAN driver may also send and respond to remote request frames.  First, 
you must define the message frame as a remote request. 

CAN_msg msg_rmt = { 
  21, 
  {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 
  1, 
  2, 
  STANDARD_FORMAT, 
  REMOTE_FRAME 
}; 

When this message is sent, the message frame contains no data and the remote 
request bit is set.  When this frame is sent, every node on the network will 
receive it.  Each node will inspect the message identifier.   
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The node that sends this message will immediately reply to the remote frame 
with a message frame matching the identifier and its current data. 

When sending the remote frame you must be careful with the DLC setting.  
Although the remote frame does not contain any data, the DLC should not be set 
to zero.  Rather, it should be set to the length of the data packet in the reply 
message frame. 

Once the remote frame has been defined, we can use it to request a message 
frame from the network. 

CAN_request (1,&msg_rmt, 0xFFFF); 

All nodes on the network will receive the remote frame.  The node that sends 
message frames for the requested ID will then send a reply data frame with the 
requested ID and its current data.  The RL_CAN driver contains a CAN_set() 
function, which allows a CAN node to respond automatically to a remote request.  
First, you must define a CAN message frame in the same way as for the 
CAN_send() function. 

CAN_msg msg_for_remote = { 
  21, 
  {0x01, 0x02, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 
  1, 
  2, 
  STANDARD_FORMAT, 
  DATA_FRAME 
}; 

The message frame is then passed to the CAN_set() function. 

CAN_set (1, &msg_for_remote, 0x00ff); 

This message frame will now be transmitted when a remote request with a 
matching ID is received. 

Exercise:  Remote Request 
 
This exercise configures a message object to send a remote frame and prepares 
another to reply. 
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Object Buffers 
The internal architecture of a CAN controller comes in two varieties: Basic CAN 
and Full CAN.  Basic CAN has a single transmit and receive buffer.  Full CAN 
has multiple transmit and receive buffers. 

Full CAN supports a more 
sophisticated use of the CAN 
protocol.  It also allows higher 
throughput of CAN messages.  
In our first example, we used 
the CAN_rx_object() function to 
define the messages to be 
received into the CAN 
controller.  We ignored the 
channel parameter.  In a full 
CAN controller, the channel 
parameter defines in which 
receive buffer the message will 
be stored.  This provides both buffering in hardware and a more efficient access 
to the new data.  The final API call in the RL_CAN driver allows us to use the 
same mechanism for transmitting messages. 

CAN_tx_object (1, 2, 11, STANDARD_FORMAT); 

Here, the channel number will specify which transmit buffer is used to hold a 
given message frame.  This allows several messages to be scheduled 
simultaneously and ensures that a high priority message will be sent immediately. 
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Glossary 
AJAX 
 Asynchronous JavaScript and XML 
 A group of client side technologies designed to create rich internet 
 applications. 

ARP 
 Address Resolution Protocol 
 On a LAN, ARP is used to discover a stations MAC address when only 
 its IP address is known. 

ADC 
 Audio Device Class 
 A USB class designed to allow bi directional transfer of Audio data 
 between A USB host and device. 

CAN 
 Controller Area Network 
  A bus standard designed specifically for automotive applications.  
 Meanwhile also used in other industries.  It allows microcontrollers and 
 devices to communicate with each other without a host computer. 

CGI 
 Common Gateway Interface 
 A standard protocol for interfacing application software to an internet 
 service typically a HTTP server. 

Composite 
 A USB device that supports two or more device classes. 

Co-operative 
 A form of operating system scheduling. Each task must de schedule itself 
 to allow other tasks to run. 

CRC 
 Cyclic Redundancy Check 
 A type of function to detect accidental alternation of data during storage 
 or transmission. 
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 Datagram 
 A networking message packet that does not provide any form of delivery 
 acknowledgment. 

DHCP 
 Dynamic Host Control Protocol 
 A TCP\IP networking protocol that allows a station to obtain 
 configuration information. 

DLC 
 Data Length Code 
 Indicates how many data bytes are in a CAN message packet.  CAN 
 messages are of variable length.  The DLC can be from 0 to 8 bytes long. 

DNS 
 Domain Name System 
 A Hierarchical naming system for the internet that translates names, 
 such as www.example.com to an IP address such as 
 207.183.123.442. 

Ethernet 
 A frame based computer networking technology for  
 Local Area Networks. 

FIFO  
 First In, First Out 
 Expresses how data are organized and manipulated relative to time and 
 prioritization.  It describes the working principle of a queue.  What 
 comes in first is handled first, what comes in next waits until the first is 
 finished, etc. 

Flash File System 
 A computer file system designed for small solid-state devices, typically 
 NAND FLASH memory. 

FTP 
 File Transfer Protocol 
 An internet protocol designed to transfer files between a client and a 
 remote internet station. 
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HID 
 Human Interface Device 
 A USB device class that supports peripherals, which provide input and 
 output to humans.  Typically, these are mouse and keyboards. 

HTTP 
 Hyper Text Transfer Protocol 
 A TCP\IP application level protocol for distributed “hypertext”.   
 A collection of inter-linked resources that forms the world wide web. 

Hub 
 A USB Hub connects to a single USB port and provides additional 
 connection ports for USB devices or further hubs. 

ICMP 
 Internet Control Message Protocol 
 A TCP\IP protocol used to provide error, diagnostic and routing 
 information between TCP\IP stations. 

IP 
 Internet Protocol 
 The primary protocol in the TCP\IP networking suite.  IP delivers 
 protocol datagrams between source and destination stations based 
 solely on their addresses. 

Mailbox 
 A region of memory that is used to queue formatted messages passed 
 between operating system tasks. 

MAC 
 Media Access Control 
 A unique identifier assigned to the Ethernet network adapter. 

MSD 
 Mass Storage Device 
 A USB device class that supports interfacing of an external storage 
 device to a USB host. 

Mutex 
 A form of binary semaphore that is used to ensure exclusive access 
 to a common resource or critical section of code in a real-time 
 operating system. 
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Port 
 A communication endpoint with an internet station.  Used by TCP 
 and UDP to pass a data payload to a specific application protocol. 

PPP 
 Point-to-Point Protocol 
 An internet protocol designed to provide a TCP\IP connection over 
 a serial or modem link. 

Pre-Emptive 
 A form of priority based scheduling in a Real-Time Operating System.  
 The highest priority task ready to run will be scheduled until it blocks 
 or a higher priority task is ready to run. 

TCP 
 Transmission Control Protocol 
 A primary protocol in the TCP\IP networking suite.  TCP provides 
 a reliable ordered delivery of data from one TCP\IP station to another. 

UDP 
 User Datagram Protocol 
 A primary protocol in the TCP\IP networking suite.  UPD provides 
 a simple transmission model without handshaking.  UDP provides 
 an ‘unreliable’ service; the application software must provide error 
 checking and handshaking if necessary. 

RTR 
 Remote Transmission Request 
 Also part of the CAN message frame to differentiate a data frame from a 
 remote frame.  The dominant RTR bit (set to 0) indicates a data frame; 
 where as a recessive RTR-bit (set to 1) indicates a remote request frame. 

 Round Robin 
 A form of scheduling in a real-time operating system where each task is 
 allotted a fixed amount of run time on the CPU. 

Semaphore 
 A semaphore is an abstract data type used to control access to system 
 resources in a real-time operating system. 
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SLIP 
 Serial Line Internet Protocol 
 An internet protocol designed to provide a TCP\IP connection over a 
 serial or modem link.  SLIP is now obsolete and is replaced by  PPP. 

SMTP 
 Simple Mail Transfer Protocol 
 A TCP\IP application layer protocol for electronic mail transfer.  SMTP 
 is used by a client to send email by connecting to a remote server. 

TFTP 
 Trivial File Transfer protocol 
 TFTP is a minimal file transfer protocol originally designed to boot 
 internet stations that did not have any form of data storage. 

Telnet 
 Telnet is an internet protocol that provides a command line 
 interface between a client and a remote internet station. 

USB 
 Universal Serial Bus 
 A serial bus designed to allow easy plug and play expansion for PCs. 

Task 
 In an operating system, a task is a self-contained unit of code.
 Generally used in real-time computing. 

SD/MMC 
 Secure Digital/Multi Media Card 
 Non volatile memory card formats used for portable devices. 
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